A layered naming architecture for the internet

Currently the Internet has only one level of name resolution, DNS, which converts user-level domain names into IP addresses. In this paper we borrow liberally from the literature to argue that there should be three levels of name resolution: from user-level descriptors to service identifiers; from service identifiers to endpoint identifiers; and from endpoint identifiers to IP addresses. These additional levels of naming and resolution (1) allow services and data to be first class Internet objects (in that they can be directly and persistently named), (2) seamlessly accommodate mobility and multi-homing and (3) integrate middleboxes (such as NATs and firewalls) into the Internet architecture. We further argue that flat names are a natural choice for the service and endpoint identifiers. Hence, this architecture requires scalable resolution of flat names, a capability that distributed hash tables (DHTs) can provide.

[1]  Ralph Droms,et al.  What's In A Name: Thoughts from the NSRG , 2003 .

[2]  Pyda Srisuresh,et al.  Traditional IP Network Address Translator (Traditional NAT) , 2001, RFC.

[3]  Michael J. O'Donnell A Proposal to Separate Handles from Names on the Internet , 2003, ArXiv.

[4]  Michalis Faloutsos,et al.  PeerNet: Pushing Peer-to-Peer Down the Stack , 2003, IPTPS.

[5]  Bryan Ford,et al.  Unmanaged Internet Protocol , 2004, Comput. Commun. Rev..

[6]  David Wetherall,et al.  Preventing Internet denial-of-service with capabilities , 2004, Comput. Commun. Rev..

[7]  David G. Andersen,et al.  Proceedings of Usits '03: 4th Usenix Symposium on Internet Technologies and Systems Mayday: Distributed Filtering for Internet Services , 2022 .

[8]  David D. Clark,et al.  Addressing reality: an architectural response to real-world demands on the evolving Internet , 2003, FDNA '03.

[9]  G.J. Minden,et al.  A survey of active network research , 1997, IEEE Communications Magazine.

[10]  Michael Walfish,et al.  Middleboxes No Longer Considered Harmful , 2004, OSDI.

[11]  Karen R. Sollins,et al.  Functional Requirements for Uniform Resource Names , 1994, RFC.

[12]  Jerome H. Saltzer,et al.  On the Naming and Binding of Network Destinations , 1993, RFC.

[13]  Angelos D. Keromytis,et al.  SOS: secure overlay services , 2002, SIGCOMM '02.

[14]  P. Francis,et al.  A near-term architecture for deploying Pip , 1993, IEEE Network.

[15]  Larry L. Peterson,et al.  A dynamic network architecture , 1992, TOCS.

[16]  Renato Iannella,et al.  URN Namespace Definition Mechanisms , 1999, RFC.

[17]  Richard Gold,et al.  Network pointers , 2003, CCRV.

[18]  Ben Y. Zhao,et al.  Distributed Object Location in a Dynamic Network , 2002, SPAA '02.

[19]  Xiaowei Yang,et al.  NIRA: a new Internet routing architecture , 2003, FDNA '03.

[20]  Anjali Gupta,et al.  Efficient Routing for Peer-to-Peer Overlays , 2004, NSDI.

[21]  David R. Karger,et al.  Chord: a scalable peer-to-peer lookup protocol for internet applications , 2003, TNET.

[22]  Christian Huitema,et al.  Multi-homed TCP , 1995 .

[23]  David Clark,et al.  Architectural considerations for a new generation of protocols , 1990, SIGCOMM 1990.

[24]  Kenneth L. Calvert,et al.  Lightweight network support for scalable end-to-end services , 2002, SIGCOMM 2002.

[25]  David D. Clark,et al.  FARA: reorganizing the addressing architecture , 2003, FDNA '03.

[26]  Timothy Roscoe,et al.  Predicate routing: enabling controlled networking , 2003, CCRV.

[27]  M. van Steen,et al.  Scalable User-Friendly Resource Names , 2001 .

[28]  Mark Handley,et al.  A scalable content-addressable network , 2001, SIGCOMM 2001.

[29]  Ben Y. Zhao,et al.  OceanStore: an architecture for global-scale persistent storage , 2000, SIGP.

[30]  Scott Shenker,et al.  Internet indirection infrastructure , 2004, TNET.

[31]  Ion Stoica,et al.  Taming IP packet flooding attacks , 2004, Comput. Commun. Rev..

[32]  Paul V. Mockapetris,et al.  Domain names - implementation and specification , 1987, RFC.

[33]  Antony I. T. Rowstron,et al.  Pastry: Scalable, Decentralized Object Location, and Routing for Large-Scale Peer-to-Peer Systems , 2001, Middleware.

[34]  Antony I. T. Rowstron,et al.  Storage management and caching in PAST, a large-scale, persistent peer-to-peer storage utility , 2001, SOSP.

[35]  David Mazières,et al.  Separating key management from file system security , 1999, SOSP.

[36]  Jon Postel,et al.  Internet Protocol , 1981, RFC.

[37]  Stephen Deering,et al.  Internet Protocol Version 6(IPv6) , 1998 .

[38]  Robbert van Renesse,et al.  P6P: A Peer-to-Peer Approach to Internet Infrastructure , 2004, IPTPS.

[39]  David R. Karger,et al.  Looking up data in P2P systems , 2003, CACM.

[40]  J. Noel Chiappa,et al.  The Nimrod Routing Architecture , 1996, RFC.

[41]  Robbert van Renesse,et al.  Implementing IPv6 as a peer-to-peer overlay network , 2002, 21st IEEE Symposium on Reliable Distributed Systems, 2002. Proceedings..

[42]  Michael Walfish,et al.  Untangling the Web from DNS , 2004, NSDI.

[43]  Charles Lynn,et al.  Endpoint Identifier Destination Option , 1996 .

[44]  Hari Balakrishnan,et al.  An end-to-end approach to host mobility , 2000, MobiCom '00.

[45]  Andrew S. Tanenbaum,et al.  Scalable Human-Friendly Resource Names , 2001, IEEE Internet Comput..

[46]  Michael J. O'Donnell,et al.  Open Network Handles Implemented in DNS , 2003, ArXiv.

[47]  Andrew G. Malis,et al.  A Framework for IP Based Virtual Private Networks , 2000, RFC.

[48]  Angelos D. Keromytis,et al.  SOS: secure overlay services , 2002, SIGCOMM 2002.

[49]  Mark Handley,et al.  From protocol stack to protocol heap: role-based architecture , 2003, CCRV.

[50]  Ben Y. Zhao,et al.  Tapestry: a resilient global-scale overlay for service deployment , 2004, IEEE Journal on Selected Areas in Communications.

[51]  Robert Morris,et al.  Chord: A scalable peer-to-peer lookup service for internet applications , 2001, SIGCOMM 2001.

[52]  Paul Francis,et al.  IPNL: A NAT-extended internet architecture , 2001, SIGCOMM 2001.

[53]  Paul Francis,et al.  Addressing in internetwork protocols , 1994 .

[54]  Mark Alexander Connell Snoeren A session-based architecture for Internet mobility , 2002 .

[55]  Emin Gün Sirer,et al.  Beehive: O(1) Lookup Performance for Power-Law Query Distributions in Peer-to-Peer Overlays , 2004, NSDI.

[56]  Hari Balakrishnan,et al.  Reconsidering Internet mobility , 2001, Proceedings Eighth Workshop on Hot Topics in Operating Systems.

[57]  Pekka Nikander,et al.  Integrating Security, Mobility and Multi-Homing in a HIP Way , 2003, NDSS.

[58]  Miguel Castro,et al.  Security for Structured Peer-to-peer Overlay Networks , 2004 .

[59]  Karen R. Sollins,et al.  Architectural Principles of Uniform Resource Name Resolution , 1998, RFC.

[60]  Peter Druschel,et al.  Providing Administrative Control and Autonomy in Structured Peer-to-Peer Overlays , 2004, IPTPS.

[61]  Indranil Gupta,et al.  Kelips: Building an Efficient and Stable P2P DHT through Increased Memory and Background Overhead , 2003, IPTPS.

[62]  Craig Partridge,et al.  Smart packets: applying active networks to network management , 2000, TOCS.

[63]  Charles E. Perkins,et al.  A Mobile Host Protocol Supporting Route Optimization and Authentication , 1995, IEEE J. Sel. Areas Commun..

[64]  Franz J. Hauck,et al.  Locating objects in wide-area systems , 1998, IEEE Commun. Mag..