Existence and uniqueness of anti-periodic solutions for prescribed mean curvature Rayleigh equations

[1]  M. Feng Periodic solutions for prescribed mean curvature Liénard equation with a deviating argument , 2012 .

[2]  Tiantian Ma,et al.  A continuation lemma and its applications to periodic solutions of Rayleigh differential equations with subquadratic potential conditions , 2012 .

[3]  Xiang Lv,et al.  Anti-periodic solutions for a class of nonlinear second-order Rayleigh equations with delays , 2010 .

[4]  Jianying Shao,et al.  Existence and uniqueness of anti-periodic solutions for a kind of Rayleigh equation with two deviating arguments , 2009 .

[5]  Bingwen Liu,et al.  Anti-periodic solutions for forced Rayleigh-type equations☆ , 2009 .

[6]  Bingwen Liu,et al.  Existence and uniqueness of periodic solutions for forced Rayleigh-type equations , 2009, Appl. Math. Comput..

[7]  Hongjing Pan One-dimensional prescribed mean curvature equation with exponential nonlinearity , 2009 .

[8]  P. Habets,et al.  Classical and non-classical solutions of a prescribed curvature equation , 2007 .

[9]  Ó. JoãoMarcosdo,et al.  Periodic solutions for nonlinear systems with mean curvature-like operators , 2006 .

[10]  J. Mawhin,et al.  Critical Point Theory and Hamiltonian Systems , 1989 .

[11]  R. Gaines,et al.  Coincidence Degree and Nonlinear Differential Equations , 1977 .

[12]  Zai-hong Wang,et al.  Erratum to: Existence and uniqueness of anti-periodic solutions for prescribed mean curvature Rayleigh equations , 2014 .

[13]  Shiping Lu,et al.  On the existence of periodic solutions to p-Laplacian Rayleigh differential equation with a delay☆ , 2007 .

[14]  Minggang Zong,et al.  Periodic solutions for Rayleigh type p-Laplacian equation with deviating arguments , 2007, Appl. Math. Lett..

[15]  K. Deimling Nonlinear functional analysis , 1985 .