A low fraction electrolyte additive as interface stabilizer for Zn electrode in aqueous batteries

[1]  Yancong Feng,et al.  Achieving Highly Reversible Zinc Anodes via N, N-Dimethylacetamide Enabled Zn-Ion Solvation Regulation. , 2022, Small.

[2]  Licheng Miao,et al.  Aqueous Electrolytes with Hydrophobic Organic Cosolvents for Stabilizing Zinc Metal Anodes. , 2022, ACS nano.

[3]  S. Indris,et al.  Unraveling a Cathode/Anode Compatible Electrolyte for High-Performance Aqueous Rechargeable Zinc Batteries , 2022, Energy Storage Materials.

[4]  Yunhui Huang,et al.  Monosodium Glutamate, an Effective Electrolyte Additive to Enhance Cycling Performance of Zn Anode in Aqueous Battery , 2022, Nano Energy.

[5]  Dipan Kundu,et al.  Long‐Life Zn Anode Enabled by Low Volume Concentration of a Benign Electrolyte Additive , 2022, Advanced Functional Materials.

[6]  S. Xiao,et al.  Neighboring sp-Hybridized Carbon Participated Molecular Oxygen Activation on the Interface of Sub-nanocluster CuO/Graphdiyne. , 2022, Journal of the American Chemical Society.

[7]  Pan He,et al.  Chemical Passivation Stabilizes Zn Anode , 2022, Advanced materials.

[8]  F. Ciucci,et al.  Hydrated Deep Eutectic Electrolytes for High‐Performance Zn‐Ion Batteries Capable of Low‐Temperature Operation , 2021, Advanced Functional Materials.

[9]  Guozhao Fang,et al.  Electrolyte/electrode interfacial electrochemical behaviors and optimization strategies in aqueous zinc-ion batteries , 2021, Energy Storage Materials.

[10]  Biao Zhang,et al.  Realizing wide-temperature Zn metal anodes through concurrent interface stability regulation and solvation structure modulation , 2021 .

[11]  Licheng Miao,et al.  Engineering zincophilic sites on Zn surface via plant extract additives for dendrite-free Zn anode , 2021, Energy Storage Materials.

[12]  Wenping Sun,et al.  Dendrite-free zinc anode enabled by zinc-chelating chemistry , 2021 .

[13]  Junnan Hao,et al.  Dual‐Function Electrolyte Additive for Highly Reversible Zn Anode , 2021, Advanced Energy Materials.

[14]  Xin Zhao,et al.  Stabilizing Zinc Anodes by Regulating the Electrical Double Layer with Saccharin Anions , 2021, Advanced materials.

[15]  Mengqiu Long,et al.  Surface‐Preferred Crystal Plane for a Stable and Reversible Zinc Anode , 2021, Advanced materials.

[16]  Yuki Yamada,et al.  An overlooked issue for high-voltage Li-ion batteries: Suppressing the intercalation of anions into conductive carbon , 2021 .

[17]  Hua Wang,et al.  Strategies towards the challenges of zinc metal anode in rechargeable aqueous zinc ion batteries , 2021 .

[18]  Kang Xu,et al.  A rechargeable zinc-air battery based on zinc peroxide chemistry , 2020, Science.

[19]  T. Deng,et al.  Solvation Structure Design for Aqueous Zn Metal Batteries. , 2020, Journal of the American Chemical Society.

[20]  C. Zhi,et al.  Dendrites in Zn‐Based Batteries , 2020, Advanced materials.

[21]  Biao Zhang,et al.  Tailoring desolvation kinetics enables stable zinc metal anodes , 2020 .

[22]  Changbao Zhu,et al.  Cationic Surfactant-Type Electrolyte Additive Enables Three-Dimensional Dendrite-Free Zinc Anode for Stable Zinc-Ion Batteries , 2020 .

[23]  Zaiping Guo,et al.  An In‐Depth Study of Zn Metal Surface Chemistry for Advanced Aqueous Zn‐Ion Batteries , 2020, Advanced materials.

[24]  Yongming Sun,et al.  Chemically resistant Cu–Zn/Zn composite anode for long cycling aqueous batteries , 2020 .

[25]  Jiujun Zhang,et al.  Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn‐Based Batteries , 2020, Advanced Functional Materials.

[26]  C. Zhi,et al.  Hydrogen‐Free and Dendrite‐Free All‐Solid‐State Zn‐Ion Batteries , 2020, Advanced materials.

[27]  Jiang Zhou,et al.  Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes , 2020 .

[28]  Jiang Zhou,et al.  Issues and opportunities facing aqueous zinc-ion batteries , 2019, Energy & Environmental Science.

[29]  G. Cui,et al.  Deciphering the Interface of a High‐Voltage (5 V‐Class) Li‐Ion Battery Containing Additive‐Assisted Sulfolane‐Based Electrolyte , 2019, Small Methods.

[30]  Ying Wang,et al.  Interlayer-Expanded V6O13·nH2O Architecture Constructed for an Advanced Rechargeable Aqueous Zinc-Ion Battery , 2019, ACS Applied Energy Materials.

[31]  Huamin Zhang,et al.  Inhibition of Zinc Dendrite Growth in Zinc-Based Batteries. , 2018, ChemSusChem.

[32]  Qiang Zhang,et al.  A Review of Precious‐Metal‐Free Bifunctional Oxygen Electrocatalysts: Rational Design and Applications in Zn−Air Batteries , 2018, Advanced Functional Materials.

[33]  Yongyao Xia,et al.  Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery , 2018, Nature Communications.

[34]  C. Zhi,et al.  Nanoporous CaCO3 Coatings Enabled Uniform Zn Stripping/Plating for Long‐Life Zinc Rechargeable Aqueous Batteries , 2018, Advanced Energy Materials.

[35]  Fei Wang,et al.  Highly reversible zinc metal anode for aqueous batteries , 2018, Nature Materials.

[36]  Weishan Li,et al.  On anodic stability and decomposition mechanism of sulfolane in high-voltage lithium ion battery , 2014 .

[37]  Wei Zhao,et al.  Composition analysis of the solid electrolyte interphase film on carbon electrode of lithium-ion battery based on lithium difluoro(oxalate)borate and sulfolane , 2012 .