Theory of semidefinite programming for Sensor Network Localization

AbstractWe analyze the semidefinite programming (SDP) based model and method for the position estimation problem in sensor network localization and other Euclidean distance geometry applications. We use SDP duality and interior-point algorithm theories to prove that the SDP localizes any network or graph that has unique sensor positions to fit given distance measures. Therefore, we show, for the first time, that these networks can be localized in polynomial time. We also give a simple and efficient criterion for checking whether a given instance of the localization problem has a unique realization in $$\mathcal{R}^2$$ using graph rigidity theory. Finally, we introduce a notion called strong localizability and show that the SDP model will identify all strongly localizable sub-networks in the input network.

[1]  I. J. Schoenberg Remarks to Maurice Frechet's Article ``Sur La Definition Axiomatique D'Une Classe D'Espace Distances Vectoriellement Applicable Sur L'Espace De Hilbert , 1935 .

[2]  M. Fréchet Sur La Definition Axiomatique D'Une Classe D'Espaces Vectoriels Distancies Applicables Vectoriellement Sur L'Espace de Hilbert , 1935 .

[3]  A. Householder,et al.  Discussion of a set of points in terms of their mutual distances , 1938 .

[4]  W. Torgerson Multidimensional scaling: I. Theory and method , 1952 .

[5]  J. Gower Some distance properties of latent root and vector methods used in multivariate analysis , 1966 .

[6]  E. Aronson,et al.  Theory and method , 1985 .

[7]  Bruce Hendrickson,et al.  Conditions for Unique Graph Realizations , 1992, SIAM J. Comput..

[8]  Yinyu Ye,et al.  Convergence behavior of interior-point algorithms , 1993, Math. Program..

[9]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[10]  Bruce Hendrickson,et al.  The Molecule Problem: Exploiting Structure in Global Optimization , 1995, SIAM J. Optim..

[11]  J. J. Moré,et al.  Global continuation for distance geometry problems , 1995 .

[12]  Vladimir A. Yakubovich,et al.  Linear Matrix Inequalities in System and Control Theory (S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan) , 1995, SIAM Rev..

[13]  Nathan Linial,et al.  The geometry of graphs and some of its algorithmic applications , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[14]  Alexander I. Barvinok,et al.  Problems of distance geometry and convex properties of quadratic maps , 1995, Discret. Comput. Geom..

[15]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[16]  F. A. Lootsma Distance Matrix Completion by Numerical Optimization , 1997 .

[17]  Jorge J. Moré,et al.  Global Continuation for Distance Geometry Problems , 1995, SIAM J. Optim..

[18]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[19]  Zhi-Quan Luo,et al.  Superlinear Convergence of a Symmetric Primal-Dual Path Following Algorithm for Semidefinite Programming , 1998, SIAM J. Optim..

[20]  Katya Scheinberg,et al.  Interior Point Trajectories in Semidefinite Programming , 1998, SIAM J. Optim..

[21]  Henry Wolkowicz,et al.  Solving Euclidean Distance Matrix Completion Problems Via Semidefinite Programming , 1999, Comput. Optim. Appl..

[22]  Michael W. Trosset,et al.  Distance Matrix Completion by Numerical Optimization , 2000, Comput. Optim. Appl..

[23]  A. Alfakih Graph rigidity via Euclidean distance matrices , 2000 .

[24]  Mani B. Srivastava,et al.  Dynamic fine-grained localization in Ad-Hoc networks of sensors , 2001, MobiCom '01.

[25]  Alexander I. Barvinok,et al.  A Remark on the Rank of Positive Semidefinite Matrices Subject to Affine Constraints , 2001, Discret. Comput. Geom..

[26]  L. El Ghaoui,et al.  Convex position estimation in wireless sensor networks , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[27]  A. Alfakih On rigidity and realizability of weighted graphs , 2001 .

[28]  Alexander Barvinok,et al.  A course in convexity , 2002, Graduate studies in mathematics.

[29]  Mani B. Srivastava,et al.  The bits and flops of the n-hop multilateration primitive for node localization problems , 2002, WSNA '02.

[30]  Jan M. Rabaey,et al.  Robust Positioning Algorithms for Distributed Ad-Hoc Wireless Sensor Networks , 2002, USENIX Annual Technical Conference, General Track.

[31]  Michael W. Trosset,et al.  Extensions of Classical Multidimensional Scaling via Variable Reduction , 2002, Comput. Stat..

[32]  Ying Zhang,et al.  Localization from mere connectivity , 2003, MobiHoc '03.

[33]  Mihai Badoiu,et al.  Approximation algorithm for embedding metrics into a two-dimensional space , 2003, SODA '03.

[34]  Yinyu Ye,et al.  Semidefinite programming for ad hoc wireless sensor network localization , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.

[35]  Brian D. O. Anderson,et al.  Rigidity, computation, and randomization in network localization , 2004, IEEE INFOCOM 2004.

[36]  James Aspnes,et al.  On the Computational Complexity of Sensor Network Localization , 2004, ALGOSENSORS.

[37]  Piotr Indyk,et al.  Low-Dimensional Embedding with Extra Information , 2004, SCG '04.

[38]  Bill Jackson,et al.  Egerváry Research Group on Combinatorial Optimization Connected Rigidity Matroids and Unique Realizations of Graphs Connected Rigidity Matroids and Unique Realizations of Graphs , 2022 .

[39]  Henry Wolkowicz,et al.  On the Embeddability of Weighted Graphs in Euclidean Spaces , 2007 .