Robust a-posteriori error estimates for weak Galerkin method for the convection-diffusion problem

Abstract We present a robust a posteriori error estimator for a weak Galerkin finite element method applied to stationary convection-diffusion equations in the convection-dominated regime. The estimator provides global upper and lower bounds of the error and is robust in the sense that upper and lower bounds are uniformly bounded with respect to the diffusion coefficient. The weak Galerkin method we use was developed by Lin, Ye, Zhang, and Zhu (2018) for the convection-diffusion problem without assuming any additional conditions on the convection coefficient and, has a simple formulation. The motivation for our work comes from the fact that while this method performs very well in the strongly convection-dominated regime, it continues to exhibit poor behavior in the intermediate regime. In this proposed work we show that by relying on adaptively refined meshes based on a posteriori residual-type estimator, we can retrieve the optimal order of convergence for all the regimes not just for the strongly convection-dominated regime. Results of the numerical experiments are presented to illustrate the performance of the error estimator.

[1]  Rüdiger Verfürth,et al.  Robust A Posteriori Error Estimates for Stationary Convection-Diffusion Equations , 2005, SIAM J. Numer. Anal..

[2]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[3]  Tie Zhang,et al.  A Posteriori Error Analysis for the Weak Galerkin Method for Solving Elliptic Problems , 2018, International Journal of Computational Methods.

[4]  Peter Hansbo,et al.  Discontinuous Galerkin methods for convectiondiffusion problems with arbitrary Péclet number , 2000 .

[5]  D. Schötzau,et al.  A robust a posteriori error estimate for hp-adaptive DG methods for convection–diffusion equations , 2011 .

[6]  Junping Wang,et al.  Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes , 2013, 1303.0927.

[7]  Kenneth Eriksson,et al.  Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems , 1993 .

[8]  Gang Chen,et al.  A robust WG finite element method for convection-diffusion-reaction equations , 2017, J. Comput. Appl. Math..

[9]  Mohammed Al-Smadi,et al.  Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates , 2019, Appl. Math. Comput..

[10]  Hans-Görg Roos,et al.  Interior penalty discontinuous approximations of convection–diffusion problems with parabolic layers , 2005, Numerische Mathematik.

[11]  Shangyou Zhang,et al.  A Weak Galerkin Finite Element Method for Singularly Perturbed Convection-Diffusion-Reaction Problems , 2018, SIAM J. Numer. Anal..

[12]  Rüdiger Verfürth A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.

[13]  Alexandre Ern,et al.  Stabilized Galerkin approximation of convection-diffusion-reaction equations: discrete maximum principle and convergence , 2005, Math. Comput..

[14]  Chunmei Wang,et al.  A Hybridized Weak Galerkin Finite Element Method for the Biharmonic Equation , 2014 .

[15]  Endre Süli,et al.  Residual-free bubbles for advection-diffusion problems: the general error analysis , 2000, Numerische Mathematik.

[16]  Weifeng Qiu,et al.  Robust a posteriori error estimates for HDG method for convection–diffusion equations , 2014, 1406.2163.

[17]  Blanca Ayuso de Dios,et al.  Discontinuous Galerkin Methods for Advection-Diffusion-Reaction Problems , 2009, SIAM J. Numer. Anal..

[18]  M. Al‐Smadi Simplified iterative reproducing kernel method for handling time-fractional BVPs with error estimation , 2017, Ain Shams Engineering Journal.

[19]  L. D. Marini,et al.  A Priori Error Analysis of Residual-Free Bubbles for Advection-Diffusion Problems , 1999 .

[20]  Lin Mu,et al.  A Weak Galerkin Mixed Finite Element Method for Biharmonic Equations , 2012, 1210.3818.

[21]  Dominik Schötzau,et al.  A robust a-posteriori error estimator for discontinuous Galerkin methods for convection--diffusion equations , 2009 .

[22]  Martin Vohralík,et al.  Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems , 2010, J. Comput. Appl. Math..

[23]  Long Chen,et al.  A Posteriori Error Estimates for Weak Galerkin Finite Element Methods for Second Order Elliptic Problems , 2014, J. Sci. Comput..

[24]  Junping Wang,et al.  Weak Galerkin finite element methods for Parabolic equations , 2012, 1212.3637.

[25]  Giancarlo Sangalli,et al.  Analysis of a Multiscale Discontinuous Galerkin Method for Convection-Diffusion Problems , 2006, SIAM J. Numer. Anal..

[26]  Xiaoping Xie,et al.  A Posteriori Error Estimator for a Weak Galerkin Finite Element Solution of the Stokes Problem , 2017 .

[27]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[28]  Ohannes A. Karakashian,et al.  A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[29]  Stephansen,et al.  A posteriori energy-norm error estimates for advection-diffusion equations approximated by weighted interior penalty methods , 2007 .

[30]  이화영 X , 1960, Chinese Plants Names Index 2000-2009.

[31]  S. Momani,et al.  Numerical Multistep Approach for Solving Fractional Partial Differential Equations , 2017 .

[32]  Xiaozhe Hu,et al.  An a posteriori error estimator for the weak Galerkin least-squares finite-element method , 2019, J. Comput. Appl. Math..

[33]  Hengguang Li,et al.  A Posteriori Error Estimates for the Weak Galerkin Finite Element Methods on Polytopal Meshes , 2019, Communications in Computational Physics.

[34]  Shangyou Zhang,et al.  A Weak Galerkin Finite Element Method for the Maxwell Equations , 2013, Journal of Scientific Computing.

[35]  R. Verfürth,et al.  Robust A Posteriori Error Estimates for Stabilized Finite Element Methods , 2014, 1402.5892.

[36]  Junping Wang,et al.  An efficient numerical scheme for the biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes , 2013, Comput. Math. Appl..

[37]  Paul Houston,et al.  Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..

[38]  Clint Dawson,et al.  Some Extensions Of The Local Discontinuous Galerkin Method For Convection-Diffusion Equations In Mul , 1999 .

[39]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[40]  Junping Wang,et al.  A weak Galerkin finite element method for the stokes equations , 2013, Adv. Comput. Math..

[41]  Lin Mu,et al.  A stable numerical algorithm for the Brinkman equations by weak Galerkin finite element methods , 2013, J. Comput. Phys..

[42]  Junping Wang,et al.  A weak Galerkin finite element method for second-order elliptic problems , 2011, J. Comput. Appl. Math..