暂无分享,去创建一个
[1] Rüdiger Verfürth,et al. Robust A Posteriori Error Estimates for Stationary Convection-Diffusion Equations , 2005, SIAM J. Numer. Anal..
[2] W. Bangerth,et al. deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.
[3] Tie Zhang,et al. A Posteriori Error Analysis for the Weak Galerkin Method for Solving Elliptic Problems , 2018, International Journal of Computational Methods.
[4] Peter Hansbo,et al. Discontinuous Galerkin methods for convectiondiffusion problems with arbitrary Péclet number , 2000 .
[5] D. Schötzau,et al. A robust a posteriori error estimate for hp-adaptive DG methods for convection–diffusion equations , 2011 .
[6] Junping Wang,et al. Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes , 2013, 1303.0927.
[7] Kenneth Eriksson,et al. Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems , 1993 .
[8] Gang Chen,et al. A robust WG finite element method for convection-diffusion-reaction equations , 2017, J. Comput. Appl. Math..
[9] Mohammed Al-Smadi,et al. Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates , 2019, Appl. Math. Comput..
[10] Hans-Görg Roos,et al. Interior penalty discontinuous approximations of convection–diffusion problems with parabolic layers , 2005, Numerische Mathematik.
[11] Shangyou Zhang,et al. A Weak Galerkin Finite Element Method for Singularly Perturbed Convection-Diffusion-Reaction Problems , 2018, SIAM J. Numer. Anal..
[12] Rüdiger Verfürth. A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.
[13] Alexandre Ern,et al. Stabilized Galerkin approximation of convection-diffusion-reaction equations: discrete maximum principle and convergence , 2005, Math. Comput..
[14] Chunmei Wang,et al. A Hybridized Weak Galerkin Finite Element Method for the Biharmonic Equation , 2014 .
[15] Endre Süli,et al. Residual-free bubbles for advection-diffusion problems: the general error analysis , 2000, Numerische Mathematik.
[16] Weifeng Qiu,et al. Robust a posteriori error estimates for HDG method for convection–diffusion equations , 2014, 1406.2163.
[17] Blanca Ayuso de Dios,et al. Discontinuous Galerkin Methods for Advection-Diffusion-Reaction Problems , 2009, SIAM J. Numer. Anal..
[18] M. Al‐Smadi. Simplified iterative reproducing kernel method for handling time-fractional BVPs with error estimation , 2017, Ain Shams Engineering Journal.
[19] L. D. Marini,et al. A Priori Error Analysis of Residual-Free Bubbles for Advection-Diffusion Problems , 1999 .
[20] Lin Mu,et al. A Weak Galerkin Mixed Finite Element Method for Biharmonic Equations , 2012, 1210.3818.
[21] Dominik Schötzau,et al. A robust a-posteriori error estimator for discontinuous Galerkin methods for convection--diffusion equations , 2009 .
[22] Martin Vohralík,et al. Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems , 2010, J. Comput. Appl. Math..
[23] Long Chen,et al. A Posteriori Error Estimates for Weak Galerkin Finite Element Methods for Second Order Elliptic Problems , 2014, J. Sci. Comput..
[24] Junping Wang,et al. Weak Galerkin finite element methods for Parabolic equations , 2012, 1212.3637.
[25] Giancarlo Sangalli,et al. Analysis of a Multiscale Discontinuous Galerkin Method for Convection-Diffusion Problems , 2006, SIAM J. Numer. Anal..
[26] Xiaoping Xie,et al. A Posteriori Error Estimator for a Weak Galerkin Finite Element Solution of the Stokes Problem , 2017 .
[27] T. Hughes,et al. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .
[28] Ohannes A. Karakashian,et al. A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..
[29] Stephansen,et al. A posteriori energy-norm error estimates for advection-diffusion equations approximated by weighted interior penalty methods , 2007 .
[30] 이화영. X , 1960, Chinese Plants Names Index 2000-2009.
[31] S. Momani,et al. Numerical Multistep Approach for Solving Fractional Partial Differential Equations , 2017 .
[32] Xiaozhe Hu,et al. An a posteriori error estimator for the weak Galerkin least-squares finite-element method , 2019, J. Comput. Appl. Math..
[33] Hengguang Li,et al. A Posteriori Error Estimates for the Weak Galerkin Finite Element Methods on Polytopal Meshes , 2019, Communications in Computational Physics.
[34] Shangyou Zhang,et al. A Weak Galerkin Finite Element Method for the Maxwell Equations , 2013, Journal of Scientific Computing.
[35] R. Verfürth,et al. Robust A Posteriori Error Estimates for Stabilized Finite Element Methods , 2014, 1402.5892.
[36] Junping Wang,et al. An efficient numerical scheme for the biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes , 2013, Comput. Math. Appl..
[37] Paul Houston,et al. Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..
[38] Clint Dawson,et al. Some Extensions Of The Local Discontinuous Galerkin Method For Convection-Diffusion Equations In Mul , 1999 .
[39] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[40] Junping Wang,et al. A weak Galerkin finite element method for the stokes equations , 2013, Adv. Comput. Math..
[41] Lin Mu,et al. A stable numerical algorithm for the Brinkman equations by weak Galerkin finite element methods , 2013, J. Comput. Phys..
[42] Junping Wang,et al. A weak Galerkin finite element method for second-order elliptic problems , 2011, J. Comput. Appl. Math..