Optimal robust control for linear feedback systems in the presence of plant uncertainty

This paper has investigated how the optimization methods can be used to deal with plant uncertainty in linear feedback control design. Firstly, we define a weighted sensitivity error function based on robust redesign. Then, by modifying the nominal controller to minimize the variance of the actual system performance from the desired performance over the whole frequency range, we obtain an optimal robust design method for a class of stochastic model errors. Moreover, the result can be used to give a good prediction to the achievable average tracking performance and control energy for practical system designs. The validity of obtained results can be illustrated by the simulation research.