Online presentations of finitely generated structures

Abstract We systematically investigate into the online content of finitely generated structures. The online content of a potentially infinite algebraic or combinatorial structure is perhaps best reflected by its PR-degrees (to be defined). We confirm a natural conjecture by showing that the PR-degrees of a finitely generated structure must be dense. Remarkably, we show that PR-degrees of an f.g. structure do not have to be upwards dense. As an application of our techniques, we refute a natural conjecture about honestly generated structures (to be stated).

[1]  Achim Blumensath,et al.  Automatic structures , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).

[2]  Anil Nerode,et al.  Open Questions in the Theory of Automatic Structures , 2008, Bull. EATCS.

[3]  Matthew Harrison-Trainor,et al.  AUTOMATIC AND POLYNOMIAL-TIME ALGEBRAIC STRUCTURES , 2019, The Journal of Symbolic Logic.

[4]  Michael E. Saks,et al.  An on-line graph coloring algorithm with sublinear performance ratio , 1989, Discret. Math..

[5]  P. E. Alaev,et al.  Structures Computable in Polynomial Time. I , 2017 .

[6]  Douglas Cenzer,et al.  Complexity Theoretic Model Theory and Algebra , 2013 .

[7]  Hal A. Kierstead,et al.  On-Line Coloring and Recursive Graph Theory , 1994, SIAM J. Discret. Math..

[8]  M. Rabin Computable algebra, general theory and theory of computable fields. , 1960 .

[9]  G. Higman Subgroups of finitely presented groups , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[10]  Julia A. Knight,et al.  Computable structures and the hyperarithmetical hierarchy , 2000 .

[11]  A. G. Melnikov,et al.  The Diversity of Categoricity Without Delay , 2017 .

[12]  G. A. Noskov Elementary theory of a finitely generated commutative ring , 1983 .

[13]  K. V. Blinov Primitively Recursively Categorical Linear Orderings , 2019, Siberian Mathematical Journal.

[14]  B. Khoussainov,et al.  Logic Colloquium 2007: Three lectures on automatic structures , 2008, 0809.3430.

[15]  Keng Meng Ng,et al.  Algebraic structures computable without delay , 2017, Theor. Comput. Sci..

[16]  P. Novikov,et al.  INFINITE PERIODIC GROUPS. I , 1968 .

[17]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[18]  Keng Meng Ng,et al.  The back-and-forth method and computability without delay , 2019, Israel Journal of Mathematics.

[19]  Henry A. Kierstead,et al.  An effective version of Dilworth’s theorem , 1981 .

[20]  Emil Artin,et al.  A Note on Finite Ring Extensions , 1951 .

[21]  Jeffrey B. Remmel,et al.  Graph colorings and recursively bounded Π10-classes , 1986, Ann. Pure Appl. Log..

[22]  Douglas A. Cenzer,et al.  Polynomial-Time versus Recursive Models , 1991, Ann. Pure Appl. Log..

[23]  Mikhail Ershov,et al.  Golod-Shafarevich Groups: a Survey , 2012, Int. J. Algebra Comput..

[24]  R. Lyndon,et al.  Combinatorial Group Theory , 1977 .

[25]  Iskander Sh. Kalimullin,et al.  FOUNDATIONS OF ONLINE STRUCTURE THEORY , 2019, The Bulletin of Symbolic Logic.

[26]  M. Gromov Groups of polynomial growth and expanding maps , 1981 .

[27]  Matthias Aschenbrenner,et al.  The logical complexity of finitely generated commutative rings , 2016, 1610.04768.

[28]  Alexander G. Melnikov Eliminating Unbounded Search in Computable Algebra , 2017, CiE.

[29]  P. E. Alaev Categoricity for Primitive Recursive and Polynomial Boolean Algebras , 2018, Algebra and Logic.

[30]  Anil Nerode,et al.  Automatic Presentations of Structures , 1994, LCC.

[31]  Jacques Lewin,et al.  Subrings of Finite Index in Finitely Generated Rings , 1967 .

[32]  H. Kierstead On-line coloringk-colorable graphs , 1998 .