Computing Rational Points in Convex Semialgebraic Sets and Sum of Squares Decompositions

Let $\mathcal{P}=\{h_1,\dots,h_s\}\subset\mathbb{Z}[Y_1,\dots,Y_k]$, $D\geq\deg(h_i)$ for $1\leq i\leq s$, $\sigma$ bounding the bit length of the coefficients of the $h_i$'s, and let $\Phi$ be a quantifier-free $\mathcal{P}$-formula defining a convex semialgebraic set. We design an algorithm returning a rational point in $\mathcal{S}$ if and only if $\mathcal{S}\cap\mathbb{Q}\neq\emptyset$. It requires $\sigma^{\mathrm{O}(1)}D^{\mathrm{O}(k^3)}$ bit operations. If a rational point is outputted, its coordinates have bit length dominated by $\sigma D^{\mathrm{O}(k^3)}$. Using this result, we obtain a procedure for deciding whether a polynomial $f\in\mathbb{Z}[X_1,\dots,X_n]$ is a sum of squares of polynomials in $\mathbb{Q}[X_1,\dots,X_n]$. Denote by $d$ the degree of $f$, $\tau$ the maximum bit length of the coefficients in $f$, $D={n+d\choose n}$, and $k\leq D(D+1)-{n+2d\choose n}$. This procedure requires $\tau^{\mathrm{O}(1)}D^{\mathrm{O}(k^3)}$ bit operations, and the coefficients of the outputted polynomials have bit length dominated by $\tau D^{\mathrm{O}(k^3)}$.

[1]  Leonid Khachiyan,et al.  Integer Optimization on Convex Semialgebraic Sets , 2000, Discret. Comput. Geom..

[2]  Pablo A. Parrilo,et al.  Computing sum of squares decompositions with rational coefficients , 2008 .

[3]  Marie-Françoise Roy,et al.  On the combinatorial and algebraic complexity of Quanti erEliminationS , 1994 .

[4]  V. Powers,et al.  An algorithm for sums of squares of real polynomials , 1998 .

[5]  Monique Laurent,et al.  Polynomial Instances of the Positive Semidefinite and Euclidean Distance Matrix Completion Problems , 2000, SIAM J. Matrix Anal. Appl..

[6]  Arnold Schönhage Factorization of Univariate Integer Polynomials by Diophantine Aproximation and an Improved Basis Reduction Algorithm , 1984, ICALP.

[7]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[8]  B. Reznick,et al.  Sums of squares of real polynomials , 1995 .

[9]  Marie-Françoise Roy,et al.  Real algebraic geometry , 1992 .

[10]  Leonid Khachiyan,et al.  On the Complexity of Semidefinite Programs , 1997, J. Glob. Optim..

[11]  Bin Li,et al.  Exact certification of global optimality of approximate factorizations via rationalizing sums-of-squares with floating point scalars , 2008, ISSAC '08.

[12]  Sebastian Heinz,et al.  Complexity of integer quasiconvex polynomial optimization , 2005, J. Complex..

[13]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[14]  Pablo A. Parrilo,et al.  A Macaulay 2 package for computing sum of squares decompositions of polynomials with rational coefficients , 2007, SNC '07.