The cannabinoid CB1 receptor interacts with the angiotensin AT2 receptor. Overexpression of AT2-CB1 receptor heteromers in the striatum of 6-hydroxydopamine hemilesioned rats

[1]  H. Ko,et al.  Levodopa-Induced Dyskinesia in Parkinson’s Disease: Pathogenesis and Emerging Treatment Strategies , 2022, Cells.

[2]  B. Tang,et al.  Subtyping of early-onset Parkinson’s disease using cluster analysis: A large cohort study , 2022, Frontiers in Aging Neuroscience.

[3]  F. Blandini,et al.  Dyskinesia and Parkinson’s disease: animal model, drug targets, and agents in preclinical testing , 2022, Expert opinion on therapeutic targets.

[4]  K. Nie,et al.  Renin-angiotensin system blockers affect cognitive decline in Parkinson's disease: The PPMI dataset. , 2022, Parkinsonism & related disorders.

[5]  D. García-Souto,et al.  Microglial angiotensin type 2 receptors mediate sex‐specific expression of inflammatory cytokines independently of circulating estrogen , 2022, Glia.

[6]  J. Parga,et al.  Nigral Neurons Degenerating in Parkinson's Disease Express the Angiotensin Receptor Type 1 Gene , 2022, Movement disorders : official journal of the Movement Disorder Society.

[7]  J. Chao,et al.  Association of angiotensin receptor blockers with incident Parkinson's disease in patients with hypertension: A retrospective cohort study. , 2022, The American journal of medicine.

[8]  Evan Z. Macosko,et al.  Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson’s disease , 2022, Nature Neuroscience.

[9]  T. Ishrat,et al.  Direct AT2R Stimulation Slows Post-stroke Cognitive Decline in the 5XFAD Alzheimer’s Disease Mice , 2022, Molecular Neurobiology.

[10]  B. S. Ye,et al.  Protective Effect of Renin-Angiotensin System Inhibitors on Parkinson’s Disease: A Nationwide Cohort Study , 2022, Frontiers in Pharmacology.

[11]  A. Rodriguez-Perez,et al.  Angiotensin Type-1 Receptor Inhibition Reduces NLRP3 Inflammasome Upregulation Induced by Aging and Neurodegeneration in the Substantia Nigra of Male Rodents and Primary Mesencephalic Cultures , 2022, Antioxidants.

[12]  Aswar Urmila,et al.  Recent Advances in the Endogenous Brain Renin-Angiotensin System and Drugs Acting on It , 2021, Journal of the renin-angiotensin-aldosterone system : JRAAS.

[13]  Nick C Fox,et al.  Losartan to slow the progression of mild-to-moderate Alzheimer’s disease through angiotensin targeting: the RADAR RCT , 2021, Efficacy and Mechanism Evaluation.

[14]  Stephen P. H. Alexander,et al.  THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein‐coupled receptors , 2021, British journal of pharmacology.

[15]  J. Vigh,et al.  Angiotensin-II Modulates GABAergic Neurotransmission in the Mouse Substantia Nigra , 2021, eNeuro.

[16]  M. Schwab,et al.  Losartan Improves Memory, Neurogenesis and Cell Motility in Transgenic Alzheimer’s Mice , 2021, Pharmaceuticals.

[17]  R. Franco,et al.  Novel Interactions Involving the Mas Receptor Show Potential of the Renin–Angiotensin system in the Regulation of Microglia Activation: Altered Expression in Parkinsonism and Dyskinesia , 2021, Neurotherapeutics.

[18]  R. Franco,et al.  Recent Advances in the Potential of Cannabinoids for Neuroprotection in Alzheimer's, Parkinson's, and Huntington's Diseases. , 2020, Advances in experimental medicine and biology.

[19]  A. Rodriguez-Perez,et al.  The intracellular renin-angiotensin system: Friend or foe. Some light from the dopaminergic neurons , 2020, Progress in Neurobiology.

[20]  J. Labandeira-Garcia,et al.  Rho kinase inhibitor fasudil reduces l‐DOPA‐induced dyskinesia in a rat model of Parkinson's disease , 2020, British journal of pharmacology.

[21]  J. Lanciego,et al.  Expression of GPR55 and either cannabinoid CB1 or CB2 heteroreceptor complexes in the caudate, putamen, and accumbens nuclei of control, parkinsonian, and dyskinetic non-human primates , 2020, Brain Structure and Function.

[22]  R. Franco,et al.  Angiotensin AT1 and AT2 receptor heteromer expression in the hemilesioned rat model of Parkinson’s disease that increases with levodopa-induced dyskinesia , 2020, Journal of Neuroinflammation.

[23]  E. Hamel,et al.  AT2R’s (Angiotensin II Type 2 Receptor’s) Role in Cognitive and Cerebrovascular Deficits in a Mouse Model of Alzheimer Disease , 2020, Hypertension.

[24]  R. Franco,et al.  Angiotensin type 2 receptors: Role in aging and neuroinflammation in the substantia nigra , 2019, Brain, Behavior, and Immunity.

[25]  A. Pérez-Villalba,et al.  Interaction between Angiotensin Type 1, Type 2, and Mas Receptors to Regulate Adult Neurogenesis in the Brain Ventricular–Subventricular Zone , 2019, Cells.

[26]  F. Guimarães,et al.  Cannabidiol and Cannabinoid Compounds as Potential Strategies for Treating Parkinson’s Disease and l-DOPA-Induced Dyskinesia , 2019, Neurotoxicity Research.

[27]  R. Franco,et al.  Increased expression of cannabinoid CB2 and serotonin 5-HT1A heteroreceptor complexes in a model of newborn hypoxic-ischemic brain damage , 2019, Neuropharmacology.

[28]  R. Zechner,et al.  Astroglial monoacylglycerol lipase controls mutant huntingtin-induced damage of striatal neurons , 2019, Neuropharmacology.

[29]  J. Lanciego,et al.  Angiotensin Type 1 Receptor Antagonists Protect Against Alpha-Synuclein-Induced Neuroinflammation and Dopaminergic Neuron Death , 2018, Neurotherapeutics.

[30]  C. Müller,et al.  Molecular and functional interaction between GPR18 and cannabinoid CB2 G‐protein‐coupled receptors. Relevance in neurodegenerative diseases , 2018, Biochemical pharmacology.

[31]  A. Ergul,et al.  Within the Brain: The Renin Angiotensin System , 2018, International journal of molecular sciences.

[32]  Adelaide I J Young,et al.  Andy’s Algorithms: new automated digital image analysis pipelines for FIJI , 2017, Scientific Reports.

[33]  B. Basavarajappa,et al.  Endocannabinoid system in neurodegenerative disorders , 2017, Journal of neurochemistry.

[34]  S. Pérez-Lloret,et al.  Renin-angiotensin system as a potential target for new therapeutic approaches in Parkinson’s disease , 2017, Expert opinion on investigational drugs.

[35]  D. Cota,et al.  MECHANISMS IN ENDOCRINOLOGY: Endocannabinoids and metabolism: past, present and future. , 2017, European journal of endocrinology.

[36]  D. Centonze,et al.  Cannabinoids therapeutic use: what is our current understanding following the introduction of THC, THC:CBD oromucosal spray and others? , 2017, Expert review of clinical pharmacology.

[37]  J. Lanciego,et al.  Expression of angiotensinogen and receptors for angiotensin and prorenin in the rat and monkey striatal neurons and glial cells , 2017, Brain Structure and Function.

[38]  B. Janic,et al.  Heteromerization Between the Bradykinin B2 Receptor and the Angiotensin-(1–7) Mas Receptor: Functional Consequences , 2016, Hypertension.

[39]  C. Carroll,et al.  Delta-9-tetrahydrocannabinol protects against MPP+ toxicity in SH-SY5Y cells by restoring proteins involved in mitochondrial biogenesis , 2016, Oncotarget.

[40]  J. Lanciego,et al.  Basic Pharmacological and Structural Evidence for Class A G-Protein-Coupled Receptor Heteromerization , 2016, Front. Pharmacol..

[41]  I. Grant Medical Use of Cannabinoids. , 2015, JAMA.

[42]  M. A. Moro,et al.  Cannabinoids in Neurodegenerative Disorders and Stroke/Brain Trauma: From Preclinical Models to Clinical Applications , 2015, Neurotherapeutics.

[43]  M. Mogi,et al.  Angiotensin II type 2 receptor signaling affects dopamine levels in the brain and prevents binge eating disorder , 2015, Journal of the renin-angiotensin-aldosterone system : JRAAS.

[44]  J. Ramos,et al.  Endocannabinoids and Neurodegenerative Disorders: Parkinson's Disease, Huntington's Chorea, Alzheimer's Disease, and Others. , 2015, Handbook of experimental pharmacology.

[45]  J. Lanciego,et al.  Stronger Dopamine D1 Receptor-Mediated Neurotransmission in Dyskinesia , 2015, Molecular Neurobiology.

[46]  J. Labandeira-Garcia,et al.  Angiotensin type 1 receptor blockage reduces l-dopa-induced dyskinesia in the 6-OHDA model of Parkinson's disease. Involvement of vascular endothelial growth factor and interleukin-1β , 2014, Experimental Neurology.

[47]  J. Lanciego,et al.  CB1 and GPR55 receptors are co-expressed and form heteromers in rat and monkey striatum , 2014, Experimental Neurology.

[48]  R. Moratalla,et al.  Aging-related dysregulation of dopamine and angiotensin receptor interaction , 2014, Neurobiology of Aging.

[49]  J. Lanciego,et al.  Detection of cannabinoid receptors CB1 and CB2 within basal ganglia output neurons in macaques: changes following experimental parkinsonism , 2014, Brain Structure and Function.

[50]  J. Lanciego,et al.  l-DOPA-treatment in primates disrupts the expression of A2A adenosine–CB1 cannabinoid–D2 dopamine receptor heteromers in the caudate nucleus , 2014, Neuropharmacology.

[51]  Latha Velayudhan,et al.  Therapeutic potential of cannabinoids in neurodegenerative disorders: a selective review. , 2014, Current pharmaceutical design.

[52]  R. Franco,et al.  l-DOPA disrupts adenosine A2A–cannabinoid CB1–dopamine D2 receptor heteromer cross-talk in the striatum of hemiparkinsonian rats: Biochemical and behavioral studies , 2014, Experimental Neurology.

[53]  A. Rodriguez-Perez,et al.  Dopamine‐Angiotensin interactions in the basal ganglia and their relevance for Parkinson's disease , 2013, Movement disorders : official journal of the Movement Disorder Society.

[54]  R. Franco,et al.  Mechanisms of cannabidiol neuroprotection in hypoxic–ischemic newborn pigs: Role of 5HT1A and CB2 receptors , 2013, Neuropharmacology.

[55]  M. Kreutz,et al.  Super-resolution microscopy of the neuronal calcium-binding proteins Calneuron-1 and Caldendrin. , 2013, Methods in molecular biology.

[56]  N. Pundir,et al.  International Standard Serial Number (issn): 2319-8141 International Journal of Universal Pharmacy and Bio Sciences Therapeutic Potential of Nicorandil International Standard Serial Number (issn): 2319-8141 , 2022 .

[57]  J. Lanciego,et al.  Cannabinoid Receptors CB1 and CB2 Form Functional Heteromers in Brain* , 2012, The Journal of Biological Chemistry.

[58]  J. Lanciego,et al.  Expression of angiotensinogen and receptors for angiotensin and prorenin in the monkey and human substantia nigra: an intracellular renin–angiotensin system in the nigra , 2012, Brain Structure and Function.

[59]  D. Janero Cannabinoid-1 receptor (CB1R) blockers as medicines: beyond obesity and cardiometabolic disorders to substance abuse/drug addiction with CB1R neutral antagonists , 2012, Expert opinion on emerging drugs.

[60]  J. Lanciego,et al.  Cannabinoid receptors CB 1 and CB 2 form functional heteromers in the brain # , 2012 .

[61]  J. Harding,et al.  The brain renin–angiotensin system: a diversity of functions and implications for CNS diseases , 2012, Pflügers Archiv - European Journal of Physiology.

[62]  M. Ghatei,et al.  Rimonabant: From RIO to Ban , 2011, Journal of obesity.

[63]  Lakshmi A Devi,et al.  AT1R–CB1R heteromerization reveals a new mechanism for the pathogenic properties of angiotensin II , 2011, The EMBO journal.

[64]  J. Lanciego,et al.  Expression of the mRNA coding the cannabinoid receptor 2 in the pallidal complex of Macaca fascicularis , 2011, Journal of psychopharmacology.

[65]  Stephen P. H. Alexander,et al.  International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid Receptors and Their Ligands: Beyond CB1 and CB2 , 2010, Pharmacological Reviews.

[66]  J. Martínez-Orgado,et al.  The neuroprotective effect of cannabidiol in an in vitro model of newborn hypoxic–ischemic brain damage in mice is mediated by CB2 and adenosine receptors , 2010, Neurobiology of Disease.

[67]  P. López-Sánchez,et al.  Angiotensin-II type 1 receptor (AT1R) and alpha-1D adrenoceptor form a heterodimer during pregnancy-induced hypertension. , 2010, Autonomic & autacoid pharmacology.

[68]  Michel Bouvier,et al.  Building a new conceptual framework for receptor heteromers. , 2009, Nature chemical biology.

[69]  J. Fernández-Ruiz,et al.  Cannabinoids and neuroprotection in motor-related disorders. , 2007, CNS & neurological disorders drug targets.

[70]  I. Lizasoain,et al.  The Cannabinoid Agonist Win55212 Reduces Brain Damage in an In Vivo Model of Hypoxic-Ischemic Encephalopathy in Newborn Rats , 2007, Pediatric Research.

[71]  M. Beltramo,et al.  Cannabinoids and neuroprotection , 2001, Molecular Neurobiology.

[72]  O. Halbach,et al.  The CNS renin-angiotensin system , 2006, Cell and Tissue Research.

[73]  K. Minneman,et al.  Subtype-specific dimerization of alpha 1-adrenoceptors: effects on receptor expression and pharmacological properties. , 2003, Molecular pharmacology.

[74]  K. Fuxe,et al.  Possible role of intramembrane receptor-receptor interactions in memory and learning via formation of long-lived heteromeric complexes: focus on motor learning in the basal ganglia. , 2003, Journal of neural transmission. Supplementum.

[75]  A. Björklund,et al.  l-DOPA-Induced Dyskinesia in the Intrastriatal 6-Hydroxydopamine Model of Parkinson's Disease: Relation to Motor and Cellular Parameters of Nigrostriatal Function , 2002, Neurobiology of Disease.

[76]  M. Vidailhet,et al.  [L-DOPA-induced dyskinesia] , 2002, Revue neurologique.

[77]  M. Glass The role of Cannabinoids in neurodegenerative diseases , 2001, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[78]  A. Björklund,et al.  Growth and Functional Efficacy of Intrastriatal Nigral Transplants Depend on the Extent of Nigrostriatal Degeneration , 2001, The Journal of Neuroscience.

[79]  P. Conlin Angiotensin II Antagonists in the Treatment of Hypertension: More Similarities Than Differences. , 2000, Journal of clinical hypertension.

[80]  N. Barnes,et al.  Identification and characterisation of angiotensin II receptor subtypes in human brain. , 1993, European journal of pharmacology.

[81]  Agid Yves Levodopa‐induced dyskinesia , 1992 .