Present and future supercapacitor carbon electrode materials for improved energy storage used in intelligent wireless sensor systems

In this paper we argue that supercapacitors are the best choice for energy storage in an intelligent wireless sensor system. Furthermore we present recent research on carbon allotropes used as electrode. To compare these materials we introduce a theoretical model to estimate the maximum surface area and maximum capacitance obtainable for carbon electrodes. The purpose of the model is to elucidate what material features are crucial for obtaining a higher energy density in electrochemical double layer capacitors which will particularly benefit energy storage in wireless intelligent sensor systems since a supercapacitor will deliver a higher energy density over time and will have a longer lifespan than a battery. The result of the comparison is that composite materials especially nitrogen-doped graphene nanosheets show great promise with their high capacitance compared to other carbon allotropes.

[1]  D. Chapman,et al.  LI. A contribution to the theory of electrocapillarity , 1913 .

[2]  Aiping Yu,et al.  Material advancements in supercapacitors: From activated carbon to carbon nanotube and graphene , 2011 .

[3]  Feng Wu,et al.  Sustainable nitrogen-doped porous carbon with high surface areas prepared from gelatin for supercapacitors , 2012 .

[4]  Chang Liu,et al.  Advanced Materials for Energy Storage , 2010, Advanced materials.

[5]  Andreas Greiner,et al.  Supercapacitors based on hybrid carbon nanofibers containing multiwalled carbon nanotubes , 2009 .

[6]  B. Fang,et al.  A novel carbon electrode material for highly improved EDLC performance. , 2006, The journal of physical chemistry. B.

[7]  Tao Zheng,et al.  An Asymmetric Hybrid Nonaqueous Energy Storage Cell , 2001 .

[8]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[9]  Mahmoud Al Ahmad,et al.  Energy harvesting from radio frequency propagation using piezoelectric cantilevers , 2012 .

[10]  Shouren Zhang,et al.  Graphene oxide with improved electrical conductivity for supercapacitor electrodes , 2012 .

[11]  F. Wei,et al.  Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes. , 2011, Chemical communications.

[12]  João Paulo Pereira do Carmo,et al.  Thermoelectric Microconverter for Energy Harvesting Systems , 2010, IEEE Transactions on Industrial Electronics.

[13]  Xujie Yang,et al.  Graphene oxide doped polyaniline for supercapacitors , 2009 .

[14]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[15]  Yaowen Yang,et al.  Toward Broadband Vibration-based Energy Harvesting , 2010 .

[16]  E. Frąckowiak Carbon materials for supercapacitor application. , 2007, Physical chemistry chemical physics : PCCP.

[17]  A. Pak,et al.  On the origin of the enhanced supercapacitor performance of nitrogen-doped graphene , 2013 .

[18]  M. Mastragostino,et al.  Dynamic Pulse Power and Energy of Ionic-Liquid-Based Supercapacitor for HEV Application , 2009 .

[19]  G. Shi,et al.  High-performance supercapacitor electrodes based on graphene hydrogels modified with 2-aminoanthraquinone moieties. , 2011, Physical chemistry chemical physics : PCCP.

[20]  Feng Li,et al.  Aligned Titania Nanotubes as an Intercalation Anode Material for Hybrid Electrochemical Energy Storage , 2008 .

[21]  Peter Enoksson,et al.  Prototype energy harvesting wheel speed sensor for anti-lock braking , 2012, 2012 IEEE International Symposium on Robotic and Sensors Environments Proceedings.

[22]  Zhongai Hu,et al.  Cutting and unzipping multiwalled carbon nanotubes into curved graphene nanosheets and their enhanced supercapacitor performance. , 2012, ACS applied materials & interfaces.

[23]  V. Presser,et al.  High power supercapacitor electrodes based on flexible TiC-CDC nano-felts , 2012 .

[24]  S. Revo,et al.  Electrode material for supercapacitors based on nanostructured carbon , 2013 .

[25]  Feng Wu,et al.  Highly mesoporous and high surface area carbon : A high capacitance electrode material for EDLCs with various electrolytes , 2008 .

[26]  Mathieu Toupin,et al.  Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors , 2006 .

[27]  Hongbo Liu,et al.  Tobacco Stem-Based Activated Carbons for High Performance Supercapacitors , 2012, Journal of Materials Engineering and Performance.

[28]  S. Shahruz Design of mechanical band-pass filters for energy scavenging , 2006 .

[29]  Gaoping Cao,et al.  Ultramicroporous carbon as electrode material for supercapacitors , 2013 .

[30]  Yanshan Wang,et al.  Templated mesoporous carbons and their performance for electric double layer capacitors , 2010 .

[31]  A. Pierre,et al.  Chemistry of aerogels and their applications. , 2002, Chemical reviews.

[32]  Tao Wen,et al.  Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. , 2013, ACS nano.

[33]  Sally Adee Wireless sensors that live forever , 2010, IEEE Spectrum.

[34]  Junpeng Liu,et al.  High-performance supercapacitor electrodes based on highly corrugated graphene sheets , 2012 .

[35]  J. Kong,et al.  Large scale templated synthesis of single-layered graphene with a high electrical capacitance , 2013 .

[36]  C. B. Vining,et al.  Semiconductors are cool , 2001, Nature.

[37]  A. B. Fuertes,et al.  Performance of templated mesoporous carbons in supercapacitors , 2007 .

[38]  Q. Xue,et al.  Effects of concentration and temperature of EMIMBF4/acetonitrile electrolyte on the supercapacitive behavior of graphene nanosheets , 2012 .

[39]  Peter Enoksson,et al.  Fabrication of High Temperature Thermoelectric Energy Harvesters for Wireless Sensors , 2013 .

[40]  B. Jang,et al.  Graphene-based supercapacitor with an ultrahigh energy density. , 2010, Nano letters.

[41]  A. B. Fuertes,et al.  Fabrication of porous carbon monoliths with a graphitic framework , 2013 .

[42]  Meryl D. Stoller,et al.  Review of Best Practice Methods for Determining an Electrode Material's Performance for Ultracapacitors , 2010 .

[43]  H. Liu,et al.  Free-standing Ni-microfiber-supported carbon nanotube aerogel hybrid electrodes in 3D for high-performance supercapacitors , 2012 .

[44]  Zhongyuan Huang,et al.  Supercapacitor based on graphene and ionic liquid electrolyte , 2011 .

[45]  J. Farmer,et al.  A comparison of power harvesting techniques and related energy storage issues , 2007 .

[46]  Jun Shen,et al.  Activated high specific surface area carbon aerogels for EDLCs , 2013 .

[47]  P. Pfeifer,et al.  Hypothetical high-surface-area carbons with exceptional hydrogen storage capacities: open carbon frameworks. , 2012, Journal of the American Chemical Society.

[48]  Dong Liu,et al.  Preparation of activated carbon aerogels with hierarchically porous structures for electrical double layer capacitors , 2013 .

[49]  Andrew J. Flewitt,et al.  Radio frequency magnetic field detection using piezoelectric coupled microcantilevers , 2011 .

[50]  E. Frąckowiak,et al.  Hybrid materials for supercapacitor application , 2010 .

[51]  F. Wei,et al.  Integrating carbon nanotube into activated carbon matrix for improving the performance of supercapacitor , 2012 .

[52]  Husam N. Alshareef,et al.  Modeling the Power Output of Piezoelectric Energy Harvesters , 2011 .

[53]  Zhiyong Ren,et al.  Efficient energy harvester for microbial fuel cells using DC/DC converters , 2011, 2011 IEEE Energy Conversion Congress and Exposition.

[54]  L. Dao,et al.  New Class of Carbon‐Nanotube Aerogel Electrodes for Electrochemical Power Sources , 2008 .

[55]  Jaan Leis,et al.  EDLC performance of carbide-derived carbons in aprotic and acidic electrolytes , 2008 .

[56]  Qiang Zhang,et al.  Hierarchical carbon nanotube membrane with high packing density and tunable porous structure for high voltage supercapacitors , 2012 .

[57]  T. Kyotani,et al.  Templated Nanocarbons for Energy Storage , 2012, Advanced materials.

[58]  Dhasarathy Parthasarathy Energy harvesting Wheel Speed Sensor , 2012 .

[59]  Q. Guo,et al.  Preparation and one-step activation of microporous carbon nanofibers for use as supercapacitor electrodes , 2013 .

[60]  P. He,et al.  Nanosized Fe3O4-modified activated carbon for supercapacitor electrodes , 2013, Russian Journal of Electrochemistry.

[61]  Bo Hye Kim,et al.  Highly conductive, mesoporous carbon nanofiber web as electrode material for high-performance supercapacitors , 2012 .

[62]  Seong-Ho Yoon,et al.  KOH Activation of Needle Coke to Develop Activated Carbons for High-Performance EDLC , 2006 .

[63]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[64]  S. Nair,et al.  Supercapacitor electrodes using nanoscale activated carbon from graphite by ball milling , 2012 .

[65]  J. Murray,et al.  Molecular Surfaces, van der Waals Radii and Electrostatic Potentials in Relation to Noncovalent Interactions , 2009 .

[66]  J. Ferraris,et al.  Carbon nanofiber electrodes for supercapacitors derived from new precursor polymer: Poly(acrylonitrile-co-vinylimidazole) , 2012 .

[67]  Jens Groot,et al.  State-of-Health Estimation of Li-ion Batteries: Cycle Life Test Methods , 2012 .

[68]  W. J. Ready,et al.  Growth time performance dependence of vertically aligned carbon nanotube supercapacitors grown on aluminum substrates , 2013 .

[69]  S. Tanaka,et al.  KOH activation of ordered mesoporous carbons prepared by a soft-templating method and their enhanced electrochemical properties , 2010 .

[70]  E. Frąckowiak,et al.  Electrochemical capacitors based on highly porous carbons prepared by KOH activation , 2004 .

[71]  Haijiao Zhang,et al.  Monolayer graphene/NiO nanosheets with two-dimension structure for supercapacitors , 2011 .

[72]  Q. Xue,et al.  High performance supercapacitor electrode based on graphene paper via flame-induced reduction of graphene oxide paper , 2013 .

[73]  Huan Xue,et al.  Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[74]  Peter Enoksson,et al.  A micro direct methanol fuel cell demonstrator , 2004 .

[75]  Dustin Banham,et al.  Bimodal, templated mesoporous carbons for capacitor applications , 2010 .

[76]  Dirk Uwe Sauer,et al.  Detailed analysis of the self-discharge of supercapacitors , 2011 .

[77]  Jingsong Huang,et al.  A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. , 2008, Chemistry.

[78]  Y. S. Yun,et al.  Hierarchically porous carbon nanofibers containing numerous heteroatoms for supercapacitors , 2013 .