Tunable Plasmonic Metasurfaces for Optical Phased Arrays

Controlling the phase and amplitude of light emitted by the elements (i.e., pixels) of an optical phased array is of paramount importance to realizing dynamic beam steering for LIDAR applications. In this paper, we propose a plasmonic pixel composed of a metallic nanoantenna covered by a thin oxide layer, and a conductive oxide, e.g., ITO, for use in a reflectarray metasurface. By considering voltage biasing of the nanoantenna via metallic connectors, and exploiting the carrier refraction effect in the metal-oxide-semiconductor capacitor in the accumulation and depletion regions, our simulations predict control of the reflection coefficient phase over a range $>330^{\circ}$ with a nearly constant magnitude. We discuss the physical mechanism underlying the optical response, the effect of the connectors, and propose strategies to maximize the magnitude of the reflection coefficient and to achieve dual-band operation. The suitability of our plasmonic pixel design for beam steering in LIDAR is demonstrated via 3D-FDTD simulations.

[1]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[2]  H. Mosallaei,et al.  A Tunable Multigate Indium‐Tin‐Oxide‐Assisted All‐Dielectric Metasurface , 2018 .

[3]  Junsuk Rho,et al.  Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications , 2018, Nano Convergence.

[4]  Jianfang Wang,et al.  Active Plasmonics: Principles, Structures, and Applications. , 2017, Chemical reviews.

[5]  Juan C. Garcia,et al.  Experimental Demonstration of >230° Phase Modulation in Gate-Tunable Graphene-Gold Reconfigurable Mid-Infrared Metasurfaces. , 2017, Nano letters.

[6]  Xianzhong Chen,et al.  Vector Vortex Beam Generation with a Single Plasmonic Metasurface , 2016 .

[7]  Pierre Berini,et al.  Vectorial control of nonlinear emission via chiral butterfly nanoantennas: generation of pure high order nonlinear vortex beams. , 2017, Optics express.

[8]  D L Wood,et al.  Optical properties of cubic hafnia stabilized with yttria. , 1990, Applied optics.

[9]  P. Genevet,et al.  Recent advances in planar optics: from plasmonic to dielectric metasurfaces , 2017 .

[10]  Shuqi Chen,et al.  Phase Manipulation of Electromagnetic Waves with Metasurfaces and Its Applications in Nanophotonics , 2018 .

[11]  G. Piau,et al.  Electronic control of linear-to-circular polarization conversion using a reconfigurable metasurface , 2017 .

[12]  Douglas H. Werner,et al.  Recent Progress in Active Optical Metasurfaces , 2019, Advanced Optical Materials.

[13]  Pierre Berini,et al.  Plasmonic nanostructured metal-oxide-semiconductor reflection modulators. , 2015, Nano letters.

[14]  K. V. Sreekanth,et al.  Graphene–Gold Metasurface Architectures for Ultrasensitive Plasmonic Biosensing , 2015, Advanced materials.

[15]  Na Liu,et al.  Dynamic plasmonic colour display , 2017, Nature Communications.

[16]  Andrea Alù,et al.  Ultrafast Electrically Tunable Polaritonic Metasurfaces , 2014 .

[17]  J. Robertson High dielectric constant gate oxides for metal oxide Si transistors , 2006 .

[18]  Federico Capasso,et al.  A broadband achromatic metalens for focusing and imaging in the visible , 2018, Nature Nanotechnology.

[19]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[20]  Eric Plum,et al.  All-optical dynamic focusing of light via coherent absorption in a plasmonic metasurface , 2017, Light: Science & Applications.

[21]  Vladimir M. Shalaev,et al.  Spatiotemporal light control with active metasurfaces , 2019, Science.

[22]  Ulf Peschel,et al.  Nanoscale conducting oxide PlasMOStor. , 2014, Nano letters.

[23]  M. Heck Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering , 2017 .

[24]  Pierre Berini,et al.  On the convergence and accuracy of the FDTD method for nanoplasmonics. , 2015, Optics express.

[25]  J. Pendry,et al.  Tunable plasmonic metasurface for perfect absorption , 2017 .

[26]  William L. Barnes,et al.  Plasmonic meta-atoms and metasurfaces , 2014, Nature Photonics.

[27]  Thomas Taubner,et al.  Active Chiral Plasmonics. , 2015, Nano letters.

[28]  H. Mosallaei,et al.  Real-Time Controllable and Multifunctional Metasurfaces Utilizing Indium Tin Oxide Materials: A Phased Array Perspective , 2017, IEEE Transactions on Nanotechnology.

[29]  Pierre Berini,et al.  Dual-polarization plasmonic metasurface for nonlinear optics. , 2015, Optics letters.

[30]  Lukas Novotny,et al.  Beam steering with a nonlinear optical phased array antenna. , 2019, Nano letters.

[31]  D. Tsai,et al.  Gate-Tunable Conducting Oxide Metasurfaces. , 2015, Nano letters.

[32]  Andrea Alù,et al.  Performing Mathematical Operations with Metamaterials , 2014, Science.

[33]  R. Wallace,et al.  High-κ gate dielectrics: Current status and materials properties considerations , 2001 .

[34]  Shuang Zhang,et al.  Metasurface holography: from fundamentals to applications , 2018, Nanophotonics.

[35]  Qiang Cheng,et al.  Space-time-coding digital metasurfaces , 2018, Nature Communications.

[36]  Shuang Zhang,et al.  Addressable metasurfaces for dynamic holography and optical information encryption , 2018, Science Advances.

[37]  D. Norris,et al.  Plasmonic Films Can Easily Be Better: Rules and Recipes , 2015, ACS photonics.

[38]  Jacob Scheuer,et al.  Metasurfaces-based holography and beam shaping: engineering the phase profile of light , 2017 .

[39]  Yi Ruan,et al.  Metasurface-based focus-tunable mirror. , 2019, Optics express.

[40]  H. Atwater,et al.  Unity-order index change in transparent conducting oxides at visible frequencies. , 2010, Nano letters (Print).

[41]  H. Atwater,et al.  Dual-Gated Active Metasurface at 1550 nm with Wide (>300°) Phase Tunability. , 2018, Nano letters.

[42]  Zhihua Zhu,et al.  Dynamically Reconfigurable Metadevice Employing Nanostructured Phase-Change Materials. , 2017, Nano letters.

[43]  Ye Feng Yu,et al.  Dynamic Beam Switching by Liquid Crystal Tunable Dielectric Metasurfaces , 2018 .

[44]  Michael R. Watts,et al.  Large-scale nanophotonic phased array , 2013, Nature.

[45]  Chen Xu,et al.  Phase tuning in two-dimensional coherently coupled vertical-cavity surface-emitting laser array. , 2016, Applied optics.