A Bayesian algorithm for model selection applied to caustic-crossing binary-lens microlensing events

We present a full Bayesian algorithm designed to perform automated searches of the parameter space of caustic-crossing binary-lens microlensing events. This builds on previous work implementing priors derived from Galactic models and geometrical considerations. The geometrical structure of the priors divides the parameter space into well-defined boxes that we explore with multiple Monte Carlo Markov Chains. We outline our Bayesian framework and test our automated search scheme using two data sets: a synthetic light curve, and the observations of OGLE-2007-BLG-472 that we analysed in previous work. For the synthetic data, we recover the input parameters. For OGLE-2007-BLG-472 we find that while χ2 is minimized for a planetary mass-ratio model with extremely long time-scale, the introduction of priors and minimization of the Bayesian information criterion, rather than χ2, favour a more plausible lens model, a binary star with components of 0.78 and 0.11 M⊙ at a distance of 6.3 kpc, compared to our previous result of 1.50 and 0.12 M⊙ at a distance of 1 kpc.

[1]  K. Horne,et al.  Bayesian analysis of caustic-crossing microlensing events , 2009, 0911.5285.

[2]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[3]  Full characterization of binary-lens event OGLE-2002-BLG-069 from PLANET observations , 2005, astro-ph/0502018.

[4]  J. Q. Smith,et al.  1. Bayesian Statistics 4 , 1993 .

[5]  E. Kerins,et al.  Synthetic microlensing maps of the Galactic bulge , 2008, 0805.4626.

[6]  K. Ulaczyk,et al.  One or more bound planets per Milky Way star from microlensing observations , 2012, Nature.

[7]  T. Ando Bayesian predictive information criterion for the evaluation of hierarchical Bayesian and empirical Bayes models , 2007 .

[8]  A. Gould,et al.  Statistics of Microlensing Optical Depth , 1994, astro-ph/9410052.

[9]  O. Szewczyk,et al.  Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing , 2006, Nature.

[10]  Stochastic distributions of lens and source properties for observed galactic microlensing events , 2005, astro-ph/0507540.

[11]  M. Schultheis,et al.  Modelling the Galactic Interstellar Extinction Distribution in Three Dimensions , 2005, astro-ph/0604427.

[12]  J. Beaulieu,et al.  A systematic fitting scheme for caustic-crossing microlensing events , 2009, 0901.1285.

[13]  H. Akaike A new look at the statistical model identification , 1974 .

[14]  David P. Bennett,et al.  Simulation of a Space-based Microlensing Survey for Terrestrial Extrasolar Planets , 2002 .

[15]  K. Ulaczyk,et al.  DISCOVERY AND MASS MEASUREMENTS OF A COLD, 10 EARTH MASS PLANET AND ITS HOST STAR , 2011, 1106.2160.

[16]  Bohdan Paczynski,et al.  Gravitational microlensing by the galactic halo , 1986 .

[17]  A. Cassan An alternative parameterisation for binary-lens caustic-crossing events , 2008, 0808.1527.

[18]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[19]  Bohdan Paczynski,et al.  Gravitational microlensing by double stars and planetary systems , 1991 .

[20]  A. Einstein LENS-LIKE ACTION OF A STAR BY THE DEVIATION OF LIGHT IN THE GRAVITATIONAL FIELD. , 1936, Science.

[21]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[22]  S. Mao,et al.  Optical depths and time-scale distributions in Galactic microlensing , 2005, astro-ph/0507210.

[23]  A. Robin,et al.  A synthetic view on structure and evolution of the Milky Way , 2003 .