Imaging through planar silver lenses in the optical near field

Near-field imaging through planar silver lenses has been demonstrated using a modified conformal-mask optical lithography arrangement. Dense feature resolution down to 250 nm (on a 500 nm period) has been achieved in 50 nm thick photoresist on silicon using broadband illumination from a mercury lamp. Finite difference time domain simulations have been performed to show the resolution improvements that can be expected for imaging through such silver lenses compared with near-field proximity imaging. The resolution enhancements that are predicted are in good agreement with the experimental results, and the conditions by which sub-diffraction-limited resolution may be achieved are given.

[1]  Srinivas Sridhar,et al.  Photonic crystals: Imaging by flat lens using negative refraction , 2003, Nature.

[2]  Viktor Podolskiy,et al.  Plasmon modes and negative refraction in metal nanowire composites. , 2003, Optics express.

[3]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[4]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[5]  Nicholas X. Fang,et al.  Rapid growth of evanescent wave by a silver superlens , 2003 .

[6]  N Garcia,et al.  Left-handed materials do not make a perfect lens. , 2002, Physical review letters.

[7]  Olivier J. F. Martin,et al.  Light-coupling masks for lensless, sub-wavelength optical lithography , 1998 .

[8]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[9]  Richard J. Blaikie,et al.  Simulation study of ‘perfect lenses’ for near-field optical nanolithography , 2002 .

[10]  Evanescent near-field optical lithography : overcoming the diffraction limit. , 2001 .

[11]  R. Blaikie,et al.  Evanescent interferometric lithography. , 2001, Applied Optics.

[12]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[13]  R. Blaikie,et al.  Sub-diffraction-limited patterning using evanescent near-field optical lithography , 1999 .

[14]  W. T. Lu,et al.  Negative refraction and left-handed electromagnetism in microwave photonic crystals. , 2003, Physical review letters.

[15]  J. Goodberlet,et al.  Patterning Sub-50 nm features with near-field embedded-amplitude masks , 2002 .

[16]  D. Schurig,et al.  The asymmetric lossy near-perfect lens , 2002 .

[17]  X S Rao,et al.  Subwavelength imaging by a left-handed material superlens. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Ashwin Iyer,et al.  Experimental and theoretical verification of focusing in a large, periodically loaded transmission line negative refractive index metamaterial. , 2003, Optics express.

[19]  M. Wegener,et al.  Magnetic Response of Metamaterials at 100 Terahertz , 2004, Science.

[20]  R A Linke,et al.  Beaming Light from a Subwavelength Aperture , 2002, Science.

[21]  V. Podolskiy,et al.  PLASMON MODES IN METAL NANOWIRES AND LEFT-HANDED MATERIALS , 2002 .

[22]  C. B. Rogers,et al.  Strain hardening in polycrystalline copper , 1964 .

[23]  Method for Fabricating High Frequency Surface Wave Transducers , 1969 .

[24]  J. Goodberlet,et al.  Patterning 100 nm features using deep-ultraviolet contact photolithography , 2000 .

[25]  U. Fischer,et al.  Submicroscopic pattern replication with visible light , 1981 .

[26]  Xiangang Luo,et al.  Surface plasmon resonant interference nanolithography technique , 2004 .

[27]  Nicholas X. Fang,et al.  Imaging properties of a metamaterial superlens , 2003 .

[28]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[29]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[30]  A. Grbic,et al.  Overcoming the diffraction limit with a planar left-handed transmission-line lens. , 2004, Physical review letters.

[31]  R. Greegor,et al.  Experimental verification and simulation of negative index of refraction using Snell's law. , 2003, Physical review letters.

[32]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[33]  Xiang Zhang,et al.  Regenerating evanescent waves from a silver superlens. , 2003, Optics express.

[34]  Richard J. Blaikie,et al.  Submicron imaging with a planar silver lens , 2004 .

[35]  T. D. Harris,et al.  Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale , 1991, Science.

[36]  A. Lagarkov,et al.  Near-perfect imaging in a focusing system based on a left-handed-material plate. , 2004, Physical review letters.

[37]  Christian Hafner,et al.  Post-modern Electromagnetics: Using Intelligent MaXwell Solvers , 1999 .

[38]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[39]  Xinhua Hu,et al.  Superlensing effect in liquid surface waves. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  I. Chuang,et al.  Experimental observations of a left-handed material that obeys Snell's law. , 2003, Physical review letters.