Linear scaling second-order Moller–Plesset theory in the atomic orbital basis for large molecular systems

We have used Almlof and Haser’s Laplace transform idea to eliminate the energy denominator in second-order perturbation theory (MP2) and obtain an energy expression in the atomic orbital basis. We show that the asymptotic computational cost of this method scales quadratically with molecular size. We then define atomic orbital domains such that selective pairwise interactions can be neglected using well-defined thresholding criteria based on the power law decay properties of the long-range contributions. For large molecules, our scheme yields linear scaling computational cost as a function of molecular size. The errors can be controlled in a precise manner and our method reproduces canonical MP2 energies. We present benchmark calculations of polyglycine chains and water clusters containing up to 3040 basis functions.

[1]  Jan Almlöf,et al.  Laplace transform techniques in Mo/ller–Plesset perturbation theory , 1992 .

[2]  Richard A. Friesner,et al.  Pseudospectral localized generalized Mo/ller–Plesset methods with a generalized valence bond reference wave function: Theory and calculation of conformational energies , 1997 .

[3]  Eric Schwegler,et al.  Linear scaling computation of the Hartree–Fock exchange matrix , 1996 .

[4]  Guntram Rauhut,et al.  Integral transformation with low‐order scaling for large local second‐order Møller–Plesset calculations , 1998 .

[5]  Peter Pulay,et al.  Comparison of the boys and Pipek–Mezey localizations in the local correlation approach and automatic virtual basis selection , 1993, J. Comput. Chem..

[6]  Michael J. Frisch,et al.  MP2 energy evaluation by direct methods , 1988 .

[7]  Michael J. Frisch,et al.  Achieving Linear Scaling for the Electronic Quantum Coulomb Problem , 1996, Science.

[8]  Marco Häser,et al.  Møller-Plesset (MP2) perturbation theory for large molecules , 1993 .

[9]  Holger Patzelt,et al.  RI-MP2: optimized auxiliary basis sets and demonstration of efficiency , 1998 .

[10]  C. W. Murray,et al.  Quadrature schemes for integrals of density functional theory , 1993 .

[11]  Georg Hetzer,et al.  Multipole approximation of distant pair energies in local MP2 calculations , 1998 .

[12]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[13]  Martin Head-Gordon,et al.  Chebyshev expansion methods for electronic structure calculations on large molecular systems , 1997 .

[14]  Jean-Paul Malrieu,et al.  Direct determination of localized Hartree–Fock orbitals as a step toward N scaling procedures , 1997 .

[15]  J. Almlöf,et al.  Principles for a direct SCF approach to LICAO–MOab‐initio calculations , 1982 .

[16]  F. Weigend,et al.  RI-MP2: first derivatives and global consistency , 1997 .

[17]  Guntram Rauhut,et al.  Local Treatment of Electron Correlation in Molecular Clusters: Structures and Stabilities of (H2O)n, n = 2−4 , 1998 .

[18]  E. Glendening,et al.  An extended basis set ab initio study of alkali metal cation–water clusters , 1967 .

[19]  J. Almlöf,et al.  Møller–Plesset correlation energies in a localized orbital basis using a Laplace transform technique , 1997 .

[20]  Gustavo E. Scuseria,et al.  A quantitative study of the scaling properties of the Hartree–Fock method , 1995 .

[21]  Richard A. Friesner,et al.  Pseudospectral localized Mo/ller–Plesset methods: Theory and calculation of conformational energies , 1995 .

[22]  P Pulay,et al.  Local Treatment of Electron Correlation , 1993 .

[23]  Eric Schwegler,et al.  Linear scaling computation of the Fock matrix. II. Rigorous bounds on exchange integrals and incremental Fock build , 1997 .

[24]  Peter R. Taylor,et al.  Integral processing in beyond-Hartree-Fock calculations , 1987 .

[25]  James J. P. Stewart,et al.  Fast semiempirical calculations , 1982 .

[26]  Walter Thiel,et al.  Interaction energies and NMR chemical shifts of noble gases in C60 , 1997 .

[27]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[28]  G. Scuseria,et al.  THE EQUILIBRIUM GEOMETRY OF C60 AS PREDICTED BY SECOND-ORDER (MP2) PERTURBATION THEORY , 1991 .

[29]  Michael J. Frisch,et al.  Achieving linear scaling in exchange-correlation density functional quadratures , 1996 .

[30]  Jan Almlöf,et al.  Elimination of energy denominators in Møller—Plesset perturbation theory by a Laplace transform approach , 1991 .

[31]  Christian Ochsenfeld,et al.  Linear and sublinear scaling formation of Hartree-Fock-type exchange matrices , 1998 .

[32]  Gustavo E. Scuseria,et al.  Linear scaling conjugate gradient density matrix search as an alternative to diagonalization for first principles electronic structure calculations , 1997 .

[33]  Walter Kohn,et al.  Density functional theory for systems of very many atoms , 1995 .

[34]  Benny G. Johnson,et al.  Linear scaling density functional calculations via the continuous fast multipole method , 1996 .

[35]  David E. Bernholdt,et al.  Fitting basis sets for the RI-MP2 approximate second-order many-body perturbation theory method , 1998 .

[36]  Marco Häser,et al.  Improvements on the direct SCF method , 1989 .

[37]  Roland Lindh,et al.  An integral direct, distributed-data, parallel MP2 algorithm , 1997 .

[38]  David Feller,et al.  Hydrogen bond energy of the water dimer , 1996 .

[39]  Michael J. Frisch,et al.  A linear scaling method for Hartree–Fock exchange calculations of large molecules , 1996 .