Local and Global Preserving Based Semi-Supervised Dimensionality Reduction Method

In many machine learning and data mining tasks, it can't achieve the best semi-supervised learning result if only use side-information. So, a local and global preserving based semi-supervised dimensionality reduction (LGSSDR) method is proposed in this paper. LGSSDR algorithm can not only preserve the positive and negative constraints but also preserve the local and global structure of the whole data manifold in the low dimensional embedding subspace. Besides, the algorithm can compute the transformation matrix and handle unseen samples easily. Experimental results on several datasets demonstrate the effectiveness of this method.

[1]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[2]  Wei Tang,et al.  Pairwise Constraints-Guided Dimensionality Reduction , 2007 .

[3]  Honggang Zhang,et al.  Comments on "Globally Maximizing, Locally Minimizing: Unsupervised Discriminant Projection with Application to Face and Palm Biometrics" , 2007, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Michael I. Jordan,et al.  Distance Metric Learning with Application to Clustering with Side-Information , 2002, NIPS.

[5]  Daoqiang Zhang,et al.  Semi-Supervised Dimensionality Reduction ∗ , 2007 .

[6]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[7]  Dan Klein,et al.  From Instance-level Constraints to Space-Level Constraints: Making the Most of Prior Knowledge in Data Clustering , 2002, ICML.

[8]  Tomer Hertz,et al.  Learning a Mahalanobis Metric from Equivalence Constraints , 2005, J. Mach. Learn. Res..

[9]  Avinash C. Kak,et al.  PCA versus LDA , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[11]  Bernhard Schölkopf,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[12]  B. Scholkopf,et al.  Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[13]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[14]  Alex Pentland,et al.  Face recognition using eigenfaces , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Changshui Zhang,et al.  Relevant linear feature extraction using side-information and unlabeled data , 2004, ICPR 2004.

[16]  Xiaofei He,et al.  Locality Preserving Projections , 2003, NIPS.

[17]  Shuicheng Yan,et al.  Graph Embedding and Extensions: A General Framework for Dimensionality Reduction , 2007 .

[18]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[19]  Misha Pavel,et al.  Adjustment Learning and Relevant Component Analysis , 2002, ECCV.

[20]  Claire Cardie,et al.  Clustering with Instance-Level Constraints , 2000, AAAI/IAAI.

[21]  Xiaojin Zhu,et al.  --1 CONTENTS , 2006 .

[22]  Hong Chang,et al.  Extending the relevant component analysis algorithm for metric learning using both positive and negative equivalence constraints , 2006, Pattern Recognit..

[23]  Jiawei Han,et al.  Semi-supervised Discriminant Analysis , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[24]  Terence Sim,et al.  The CMU Pose, Illumination, and Expression Database , 2003, IEEE Trans. Pattern Anal. Mach. Intell..