Activation of Yeast Mitochondrial Translation: Who Is in Charge?

[1]  F. Fontanesi,et al.  The DEAD-box helicase Mss116 plays distinct roles in mitochondrial ribogenesis and mRNA-specific translation , 2017, Nucleic acids research.

[2]  T. Fox,et al.  The Cox1 C-terminal domain is a central regulator of cytochrome c oxidase biogenesis in yeast mitochondria , 2017, The Journal of Biological Chemistry.

[3]  M. H. Barros,et al.  Aep3p-dependent translation of yeast mitochondrial ATP8 , 2017, Molecular biology of the cell.

[4]  Juan Zhang,et al.  The Schizosaccharomyces pombe PPR protein Ppr10 associates with a novel protein Mpa1 and acts as a mitochondrial translational activator , 2017, Nucleic acids research.

[5]  V. Ramakrishnan,et al.  The structure of the yeast mitochondrial ribosome , 2017, Science.

[6]  N. Pfanner,et al.  Dynamic organization of the mitochondrial protein import machinery , 2016, Biological chemistry.

[7]  Frederik Sommer,et al.  Proteomic profiling of the mitochondrial ribosome identifies Atp25 as a composite mitochondrial precursor protein , 2016, Molecular biology of the cell.

[8]  Maojun Yang,et al.  Amazing structure of respirasome: unveiling the secrets of cell respiration , 2016, Protein & Cell.

[9]  R. Lightowlers,et al.  The process of mammalian mitochondrial protein synthesis , 2016, Cell and Tissue Research.

[10]  N. Ban,et al.  Structure and Function of the Mitochondrial Ribosome. , 2016, Annual review of biochemistry.

[11]  Alan Brown,et al.  Organization and Regulation of Mitochondrial Protein Synthesis. , 2016, Annual review of biochemistry.

[12]  C. Herbert,et al.  Ribosome recycling defects modify the balance between the synthesis and assembly of specific subunits of the oxidative phosphorylation complexes in yeast mitochondria , 2016, Nucleic acids research.

[13]  L. S. Churchman,et al.  Synchronized mitochondrial and cytosolic translation programs , 2016, Nature.

[14]  Malgorzata Rak,et al.  Regulation of mitochondrial translation of the ATP8/ATP6 mRNA by Smt1p , 2016, Molecular biology of the cell.

[15]  G. Hernández,et al.  A Novel Function of Pet54 in Regulation of Cox1 Synthesis in Saccharomyces cerevisiae Mitochondria* , 2016, The Journal of Biological Chemistry.

[16]  A. Barrientos,et al.  Mitochondrial Cytochrome c Oxidase Biogenesis Is Regulated by the Redox State of a Heme-Binding Translational Activator. , 2016, Antioxidants & redox signaling.

[17]  G. Atkinson,et al.  Aim-less translation: loss of Saccharomyces cerevisiae mitochondrial translation initiation factor mIF3/Aim23 leads to unbalanced protein synthesis , 2016, Scientific Reports.

[18]  W. Martin,et al.  Endosymbiotic theories for eukaryote origin , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[19]  M. Henry,et al.  Mam33 promotes cytochrome c oxidase subunit I translation in Saccharomyces cerevisiae mitochondria , 2015, Molecular biology of the cell.

[20]  S. Andersson,et al.  Mitochondrial genomes are retained by selective constraints on protein targeting , 2015, Proceedings of the National Academy of Sciences.

[21]  P. Rehling,et al.  Unlocking the presequence import pathway. , 2015, Trends in cell biology.

[22]  Ruedi Aebersold,et al.  The complete structure of the 55S mammalian mitochondrial ribosome , 2015, Science.

[23]  Alan Brown,et al.  The structure of the human mitochondrial ribosome , 2015, Science.

[24]  S. Jakobs,et al.  Organization of Mitochondrial Gene Expression in Two Distinct Ribosome-Containing Assemblies. , 2015, Cell reports.

[25]  M. Patrushev,et al.  Mutations in mitochondrial DNA and approaches for their correction , 2014, Biochemistry (Moscow).

[26]  A. Tzagoloff,et al.  Assembly of the Rotor Component of Yeast Mitochondrial ATP Synthase Is Enhanced When Atp9p Is Supplied by Atp9p-Cox6p Complexes* , 2014, The Journal of Biological Chemistry.

[27]  X. Pérez-Martínez,et al.  The Pet309 pentatricopeptide repeat motifs mediate efficient binding to the mitochondrial COX1 transcript in yeast , 2014, RNA biology.

[28]  N. Zenkin,et al.  Mitochondrial translation initiation machinery: Conservation and diversification☆ , 2014, Biochimie.

[29]  N. Zenkin,et al.  Protein biosynthesis in mitochondria , 2013, Biochemistry (Moscow).

[30]  J. Herrmann,et al.  Control of protein synthesis in yeast mitochondria: the concept of translational activators. , 2013, Biochimica et biophysica acta.

[31]  E. Shoubridge,et al.  MITRAC Links Mitochondrial Protein Translocation to Respiratory-Chain Assembly and Translational Regulation , 2012, Cell.

[32]  F. Fontanesi,et al.  A heme-sensing mechanism in the translational regulation of mitochondrial cytochrome c oxidase biogenesis. , 2012, Cell metabolism.

[33]  M. Ott,et al.  The Cbp3–Cbp6 complex coordinates cytochrome b synthesis with bc1 complex assembly in yeast mitochondria , 2012, The Journal of cell biology.

[34]  Tanel Tenson,et al.  Evolutionary and genetic analyses of mitochondrial translation initiation factors identify the missing mitochondrial IF3 in S. cerevisiae , 2012, Nucleic acids research.

[35]  A. Imhof,et al.  Cbp3–Cbp6 interacts with the yeast mitochondrial ribosomal tunnel exit and promotes cytochrome b synthesis and assembly , 2011, The Journal of cell biology.

[36]  T. Nyström,et al.  Absence of mitochondrial translation control proteins extends life span by activating sirtuin-dependent silencing. , 2011, Molecular cell.

[37]  B. Warscheid,et al.  Coa3 and Cox14 are essential for negative feedback regulation of COX1 translation in mitochondria , 2010, The Journal of cell biology.

[38]  T. Fox,et al.  The Carboxyl-terminal End of Cox1 Is Required for Feedback Assembly Regulation of Cox1 Synthesis in Saccharomyces cerevisiae Mitochondria* , 2010, The Journal of Biological Chemistry.

[39]  D. Winge,et al.  Formation of the Redox Cofactor Centers during Cox1 Maturation in Yeast Cytochrome Oxidase , 2009, Molecular and Cellular Biology.

[40]  Malgorzata Rak,et al.  F1-dependent translation of mitochondrially encoded Atp6p and Atp8p subunits of yeast ATP synthase , 2009, Proceedings of the National Academy of Sciences.

[41]  F. Fontanesi,et al.  Mss51 and Ssc1 Facilitate Translational Regulation of Cytochrome c Oxidase Biogenesis , 2009, Molecular and Cellular Biology.

[42]  T. Fox,et al.  Dual functions of Mss51 couple synthesis of Cox1 to assembly of cytochrome c oxidase in Saccharomyces cerevisiae mitochondria. , 2009, Molecular biology of the cell.

[43]  E. Shoubridge,et al.  Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome , 2009, Nature Genetics.

[44]  Olga G. Troyanskaya,et al.  Computationally Driven, Quantitative Experiments Discover Genes Required for Mitochondrial Biogenesis , 2009, PLoS genetics.

[45]  Benjamin J. Kaspar,et al.  A shared RNA-binding site in the Pet54 protein is required for translational activation and group I intron splicing in yeast mitochondria , 2008, Nucleic acids research.

[46]  A. Torres-Larios,et al.  The Pentatricopeptide Repeats Present in Pet309 Are Necessary for Translation but Not for Stability of the Mitochondrial COX1 mRNA in Yeast* , 2008, Journal of Biological Chemistry.

[47]  B. Warscheid,et al.  Shy1 couples Cox1 translational regulation to cytochrome c oxidase assembly , 2007, The EMBO journal.

[48]  D. Wallace Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine. , 2007, Annual review of biochemistry.

[49]  D. Winge,et al.  Evidence for a Pro-oxidant Intermediate in the Assembly of Cytochrome Oxidase* , 2007, Journal of Biological Chemistry.

[50]  A. Tzagoloff,et al.  The Saccharomyces cerevisiae ATP22 Gene Codes for the Mitochondrial ATPase Subunit 6-Specific Translation Factor , 2007, Genetics.

[51]  A. Myers,et al.  COX24 Codes for a Mitochondrial Protein Required for Processing of the COX1 Transcript* , 2006, Journal of Biological Chemistry.

[52]  T. Fox,et al.  Overexpression of the COX2 translational activator, Pet111p, prevents translation of COX1 mRNA and cytochrome c oxidase assembly in mitochondria of Saccharomyces cerevisiae , 2005, Molecular microbiology.

[53]  G. Rödel,et al.  Saccharomyces cerevisiae translational activator Cbs1p is associated with translationally active mitochondrial ribosomes , 2005, Biological chemistry.

[54]  C. Dieckmann,et al.  The mitochondrial message-specific mRNA protectors Cbp1 and Pet309 are associated in a high-molecular weight complex. , 2004, Molecular biology of the cell.

[55]  G. Rödel,et al.  Saccharomyces cerevisiae translational activator Cbs2p is associated with mitochondrial ribosomes , 2004, Current Genetics.

[56]  C. Dieckmann,et al.  Aep3p Stabilizes the Mitochondrial Bicistronic mRNA Encoding Subunits 6 and 8 of the H+-translocating ATP Synthase of Saccharomyces cerevisiae* , 2004, Journal of Biological Chemistry.

[57]  T. Fox,et al.  Mss51p promotes mitochondrial Cox1p synthesis and interacts with newly synthesized Cox1p , 2003, The EMBO journal.

[58]  A. Kaji,et al.  Temperature-sensitive mutation in yeast mitochondrial ribosome recycling factor (RRF). , 2003, Nucleic acids research.

[59]  T. Fox,et al.  Mitochondrial Translation of Saccharomyces cerevisiae COX2 mRNA Is Controlled by the Nucleotide Sequence Specifying the Pre-Cox2p Leader Peptide , 2001, Molecular and Cellular Biology.

[60]  K. Pfeiffer,et al.  Supercomplexes in the respiratory chains of yeast and mammalian mitochondria , 2000, The EMBO journal.

[61]  M. Costanzo,et al.  Highly diverged homologs of Saccharomyces cerevisiae mitochondrial mRNA-specific translational activators have orthologous functions in other budding yeasts. , 2000, Genetics.

[62]  P. Nagley,et al.  Suppression of a nuclear aep2 mutation in Saccharomyces cerevisiae by a base substitution in the 5'-untranslated region of the mitochondrial oli1 gene encoding subunit 9 of ATP synthase. , 1999, Genetics.

[63]  B. Purnelle,et al.  The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae , 1998, FEBS letters.

[64]  B. Przybyla-Zawislak,et al.  The Saccharomyces cerevisiae Pet309 protein is embedded in the mitochondrial inner membrane. , 1998, European journal of biochemistry.

[65]  M. Costanzo,et al.  Functional Interactions between Yeast Mitochondrial Ribosomes and mRNA 5′ Untranslated Leaders , 1998, Molecular and Cellular Biology.

[66]  T. Fox,et al.  In vivo analysis of Saccharomyces cerevisiae COX2 mRNA 5'-untranslated leader functions in mitochondrial translation initiation and translational activation. , 1997, Genetics.

[67]  G M Manthey,et al.  The product of the nuclear gene PET309 is required for translation of mature mRNA and stability or production of intron‐containing RNAs derived from the mitochondrial COX1 locus of Saccharomyces cerevisiae. , 1995, The EMBO journal.

[68]  M. Costanzo,et al.  A point mutation in the 5′-untranslated leader that affects translational activation of the mitochondrial COX 3 mRNA , 1995, Current Genetics.

[69]  M. Costanzo,et al.  Analysis of the Saccharomyces cerevisiae mitochondrial COX3 mRNA 5' untranslated leader: translational activation and mRNA processing , 1995, Molecular and cellular biology.

[70]  C. Dieckmann,et al.  In vivo analysis of sequences required for translation of cytochrome b transcripts in yeast mitochondria , 1995, Molecular and cellular biology.

[71]  W. Neupert,et al.  Mitochondrial heat shock protein 70, a molecular chaperone for proteins encoded by mitochondrial DNA , 1994, The Journal of cell biology.

[72]  M. Costanzo,et al.  Interactions among three proteins that specifically activate translation of the mitochondrial COX3 mRNA in Saccharomyces cerevisiae , 1994, Molecular and cellular biology.

[73]  T. Hofmann,et al.  Formation of the 3′ end of yeast mitochondrial mRNAs occurs by site‐specific cleavage two bases downstream of a conserved dodecamer sequence , 1993, Yeast.

[74]  T. Fox,et al.  Alteration of the Saccharomyces cerevisiae COX2 mRNA 5'-untranslated leader by mitochondrial gene replacement and functional interaction with the translational activator protein PET111. , 1993, Molecular biology of the cell.

[75]  M. Costanzo,et al.  Suppression of a defect in the 5' untranslated leader of mitochondrial COX3 mRNA by a mutation affecting an mRNA-specific translational activator protein , 1993, Molecular and cellular biology.

[76]  L. Grivell,et al.  The biology of yeast mitochondrial introns , 1993, Molecular Biology Reports.

[77]  T. Fox,et al.  PET111 acts in the 5'-leader of the Saccharomyces cerevisiae mitochondrial COX2 mRNA to promote its translation. , 1993, Genetics.

[78]  G. Michaelis,et al.  Nuclear control of the messenger RNA expression for mitochondrial ATPase subunit 9 in a new yeast mutant. , 1993, Journal of molecular biology.

[79]  T. Fox,et al.  A novel small-subunit ribosomal protein of yeast mitochondria that interacts functionally with an mRNA-specific translational activator , 1990, Molecular and cellular biology.

[80]  T. Fox,et al.  A genetic link between an mRNA-specific translational activator and the translation system in yeast mitochondria. , 1990, Genetics.

[81]  J. F. Wright,et al.  A mitochondrial intergenic mutation affecting processing of specific yeast mitochondrial transcripts. , 1988, Nucleic acids research.

[82]  M. Costanzo,et al.  Specific translational activation by nuclear gene products occurs in the 5' untranslated leader of a yeast mitochondrial mRNA. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[83]  R. Bordonné,et al.  Expression of the oxi1 and maturase-related RF1 genes in yeast mitochondria , 1988, Current Genetics.

[84]  C. Dieckmann,et al.  Nuclearly-encoded CBP1 interacts with the 5′ end of mitochondrial cytochrome b pre-mRNA , 1987, Current Genetics.

[85]  N. Martin,et al.  Origins of transcripts of the yeast mitochondrial var 1 gene. , 1984, The Journal of biological chemistry.

[86]  G. Faye,et al.  PROCESSING OF THE 0X1-3 PRE-MESSENGER RNA IN YEAST , 1983 .

[87]  G. Faye,et al.  Analysis of a yeast nuclear gene involved in the maturation of mitochondrial pre-messenger RNA of the cytochrome oxidase subunit I , 1983, Cell.

[88]  F. Nóbrega,et al.  Assembly of the mitochondrial membrane system. Processing of the apocytochrome b precursor RNAs in Saccharomyces cerevisiae D273-10B. , 1982, The Journal of biological chemistry.

[89]  C. Dieckmann,et al.  Identification and cloning of a yeast nuclear gene (CBP1) involved in expression of mitochondrial cytochrome b. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[90]  L. Grivell,et al.  Yeast mitochondrial RNA does not contain poly(A) , 1974, Nature.

[91]  K. Watson THE ORGANIZATION OF RIBOSOMAL GRANULES WITHIN MITOCHONDRIAL STRUCTURES OF AEROBIC AND ANAEROBIC CELLS OF SACCHAROMYCES CEREVISAE , 1972, The Journal of cell biology.

[92]  T. Fox,et al.  Directed alteration of Saccharomyces cerevisiae mitochondrial DNA by biolistic transformation and homologous recombination. , 2007, Methods in molecular biology.

[93]  G. Faye,et al.  Organization and processing of the mitochondrial oxi3/oli2 multigenic transcript in yeast , 2004, Molecular and General Genetics MGG.

[94]  T. Fox,et al.  The yeast nuclear gene CBS1 is required for translation of mitochondrial mRNAs bearing the cob 5′ untranslated leader , 2004, Molecular and General Genetics MGG.

[95]  F. Kaudewitz,et al.  Mitochondrial suppression of a yeast nuclear mutation which affects the translation of the mitochondrial apocytochrome b transcript , 2004, Current Genetics.

[96]  G. Rödel Two yeast nuclear genes, CBS1 and CBS2, are required for translation of mitochondrial transcripts bearing the 5′-untranslated COB leader , 2004, Current Genetics.

[97]  Sushma Naithani,et al.  Interactions among COX1, COX2, and COX3 mRNA-specific translational activator proteins on the inner surface of the mitochondrial inner membrane of Saccharomyces cerevisiae. , 2003, Molecular biology of the cell.

[98]  D. L. Marykwas,et al.  Control oftheSaccharomyces cerevisiae Regulatory GenePET494: Transcriptional Repression byGlucose andTranslational Induction byOxygen , 1989 .

[99]  G. Faye,et al.  Steps in processing of the mitochondrial cytochrome oxidase subunit I pre-mRNA affected by a nuclear mutation in yeast. , 1984, Proceedings of the National Academy of Sciences of the United States of America.