Pressure and Suction Surfaces Redesign for High Lift Low Pressure Turbines

Nowadays there is a big effort toward improving the low pressure turbine efficiency even to the extent of penalising other relevant design parameters. LP turbine efficiency influences SFC more than other modules in the engine. Most of the research has been oriented to reduce profile losses, modifying the suction surface, the pressure surface or the three-dimensional regions of the flow. To date, the pressure surface has received very little attention. The dependence of the profile losses on the behaviour of both pressure and suction surfaces has been investigated for the case of a high lift design that is representative of a modern civil engine LP turbine. The experimental work described in this paper consists on two different sets of experiments: the first one concluded an improved pressure surface definition and the second set was oriented to achieve further improvement in losses modifying the profile suction surface. Three profiles were designed and tested over a range of conditions. The first profile is a thin-solid design. This profile has a large pressure side separation bubble extending from near the leading edge to mid-chord. The second profile is a hollow design with the same suction surface as the first one but avoiding pressure surface separation. The third one is also a hollow design with the same pressure surface as the second profile but more aft loaded suction surface. The study is part of a wider on-going research programme covering the effects of the different design parameters on losses. The paper describes the experiments conducted in a lowspeed linear cascade facility. It gathers together steady and unsteady loss measurements by wake traverse and surface pressure distributions for all the profiles. It is shown that thick profiles generates only around 90% of the losses of a thinsolid profile with the same suction surface. The results support the idea of an optimum position axial position for the peak Mach number. Caution is recommended as profile aft loading would not be a completely secure method for reducing losses. NOMENCLATURE α1 Inlet flow angle. α2 Outlet flow angle. Cax Axial chord. I Incidence.