Multipoint ICME encounters: Pre-STEREO and STEREO observations

[1]  J. Gosling Coronal Mass Ejections and Magnetic Flux Ropes in Interplanetary Space , 2013 .

[2]  L. Burlaga,et al.  Global Configuration of a Magnetic Cloud , 2013 .

[3]  K. Marubashi Interplanetary Magnetic Flux Ropes and Solar Filaments , 2013 .

[4]  J. Gosling Coronal Mass Ejections: An Overview , 2013 .

[5]  R. Goldstein,et al.  Particle and Field Signatures of Coronal Mass Ejections in the Solar Wind , 2013 .

[6]  C. Russell,et al.  Comparing Solar Minimum 23/24 with Historical Solar Wind Records at 1 AU , 2011 .

[7]  B. Heber,et al.  Multi‐point observations of CIR‐associated energetic particles during the 2008 solar minimum , 2010 .

[8]  J. Luhmann,et al.  STEREO observations of interplanetary coronal mass ejections and prominence deflection during solar minimum period , 2009 .

[9]  T. Howard,et al.  Interplanetary Coronal Mass Ejections Observed in the Heliosphere: 3. Physical Implications , 2009 .

[10]  D. Odstrcil,et al.  Numerical Heliospheric Simulations as Assisting Tool for Interpretation of Observations by STEREO Heliospheric Imagers , 2009 .

[11]  J. Luhmann,et al.  ROTATION OF CORONAL MASS EJECTIONS DURING ERUPTION , 2009 .

[12]  A. Galvin,et al.  Optimized Grad – Shafranov Reconstruction of a Magnetic Cloud Using STEREO-Wind Observations , 2009 .

[13]  J. Luhmann,et al.  Multispacecraft recovery of a magnetic cloud and its origin from magnetic reconnection on the Sun , 2009 .

[14]  C. Russell,et al.  Multispacecraft Observations of Magnetic Clouds and Their Solar Origins between 19 and 23 May 2007 , 2009 .

[15]  C. Russell,et al.  Stream Interactions and Interplanetary Coronal Mass Ejections at 5.3 AU near the Solar Ecliptic Plane , 2008 .

[16]  Y. Lin,et al.  A uniform-twist magnetic flux rope in the solar wind , 2008 .

[17]  E. Christian,et al.  The STEREO Mission: An Introduction , 2008 .

[18]  C. Russell,et al.  Stream Interactions and Interplanetary Coronal Mass Ejections at 0.72 AU , 2008 .

[19]  C. Russell,et al.  Reconstruction of the 2007 May 22 Magnetic Cloud: How Much Can We Trust the Flux-Rope Geometry of CMEs? , 2008 .

[20]  M. Temmer,et al.  Two-spacecraft reconstruction of a magnetic cloud and comparison to its solar source , 2007 .

[21]  R. Lepping,et al.  Long-duration magnetic clouds: a comparison of analyses using torus- and cylinder-shaped flux rope models , 2007 .

[22]  W. Manchester,et al.  Reply to comment by P. Riley and J. T. Gosling on “Are high‐latitude forward‐reverse shock pairs driven by overexpansion?” , 2007 .

[23]  P. Démoulin,et al.  Progressive Transformation of a Flux Rope to an ICME , 2007, 0706.2889.

[24]  C. Owen,et al.  Multi-Spacecraft Study of the 21 January 2005 ICME , 2007 .

[25]  J. Krall,et al.  Are All Coronal Mass Ejections Hollow Flux Ropes? , 2007 .

[26]  Christopher T. Russell,et al.  Properties of Interplanetary Coronal Mass Ejections at One AU During 1995 – 2004 , 2006 .

[27]  T. Zurbuchen,et al.  In-Situ Solar Wind and Magnetic Field Signatures of Interplanetary Coronal Mass Ejections , 2006 .

[28]  N. Gopalswamy,et al.  On the Rates of Coronal Mass Ejections: Remote Solar and In Situ Observations , 2006 .

[29]  Nat Gopalswamy,et al.  Coronal mass ejections of solar cycle 23 , 2006 .

[30]  J. Richardson,et al.  Constraints on the global structure of magnetic clouds: Transverse size and curvature , 2006, physics/0606003.

[31]  A. Vourlidas,et al.  The Proper Treatment of Coronal Mass Ejection Brightness: A New Methodology and Implications for Observations , 2006 .

[32]  A. Szabo,et al.  A summary of WIND magnetic clouds for years 1995-2003: model-fitted parameters, associated errors and classifications , 2006 .

[33]  M. Owens,et al.  A kinematically distorted flux rope model for magnetic clouds , 2006 .

[34]  R. Wiens,et al.  Suprathermal electrons in high‐speed streams from coronal holes: Counterstreaming on open field lines at 1 AU , 2005 .

[35]  H. Koskinen,et al.  Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23 , 2005 .

[36]  Q. Hu,et al.  Fitting Flux Ropes to a Global MHD Solution: A Comparison of Techniques. Appendix 1 , 2004 .

[37]  I. Richardson,et al.  The fraction of interplanetary coronal mass ejections that are magnetic clouds: Evidence for a solar cycle variation , 2004 .

[38]  I. Richardson,et al.  Identification of interplanetary coronal mass ejections at 1 AU using multiple solar wind plasma composition anomalies , 2004 .

[39]  V. Bothmer,et al.  On the three-dimensional configuration of coronal mass ejections , 2004 .

[40]  N. Gopalswamy,et al.  A catalog of white light coronal mass ejections observed by the SOHO spacecraft , 2004 .

[41]  J. Richardson,et al.  Interplanetary coronal mass ejections observed by Voyager 2 between 1 and 30 AU , 2004 .

[42]  R. Forsyth,et al.  Two examples of magnetic clouds with double rotations observed by the Ulysses spacecraft , 2004 .

[43]  D. D. Zeeuw,et al.  Modeling a space weather event from the Sun to the Earth: CME generation and interplanetary propagation , 2004 .

[44]  J. Luhmann,et al.  Solar cycle control of the magnetic cloud polarity and the geoeffectiveness , 2004 .

[45]  P. Riley,et al.  Kinematic Treatment of Coronal Mass Ejection Evolution in the Solar Wind , 2004 .

[46]  J. Gosling,et al.  Properties of high‐latitude CME‐driven disturbances during Ulysses second northern polar passage , 2003 .

[47]  M. Hidalgo A study of the expansion and distortion of the cross section of magnetic clouds in the interplanetary medium , 2003 .

[48]  J. Linker,et al.  Using an MHD simulation to interpret the global context of a coronal mass ejection observed by two spacecraft , 2003 .

[49]  G. Aulanier,et al.  Interpretation of a complex CME event: Coupling of scales in multiple flux systems , 2003 .

[50]  L. Burlaga,et al.  Successive CMEs and complex ejecta , 2002 .

[51]  Qiang Hu,et al.  Reconstruction of magnetic clouds in the solar wind: Orientations and configurations , 2002 .

[52]  C. Cid,et al.  Plasma and Magnetic Field Inside Magnetic Clouds: a Global Study , 2002 .

[53]  B. Heber,et al.  An ICME observed by Voyager 2 at 58 AU and by Ulysses at 5 AU , 2001 .

[54]  E. Cliver,et al.  Sources of geomagnetic storms for solar minimum and maximum conditions during 1972–2000 , 2001 .

[55]  C. Russell,et al.  Multispacecraft modeling of the flux rope structure of interplanetary coronal mass ejections: Cylindrically symmetric versus nonsymmetric topologies , 2001 .

[56]  J. Richardson,et al.  Voyager 2 observations of helium abundance enhancements from 1–60 AU , 2001 .

[57]  Russell A. Howard,et al.  Properties of coronal mass ejections: SOHO LASCO observations from January 1996 to June 1998 , 2000 .

[58]  Barbara June Thompson,et al.  Relationship of halo coronal mass ejections, magnetic clouds, and magnetic storms , 2000 .

[59]  C. Russell,et al.  Intercomparison of NEAR and Wind interplanetary coronal mass ejection observations , 1999 .

[60]  J. Luhmann,et al.  Solar cycle evolution of the structure of magnetic clouds in the inner heliosphere , 1998 .

[61]  J. Gosling,et al.  Overexpanding coronal mass ejections at high heliographic latitudes: Observations and simulations , 1998 .

[62]  V. Bothmer,et al.  The structure and origin of magnetic clouds in the solar wind , 1997 .

[63]  N. Crooker,et al.  A magnetic cloud as a distended flux rope occlusion in the heliospheric current sheet , 1996 .

[64]  L. Burlaga,et al.  Magnetic flux rope versus the spheromak as models for interplanetary magnetic clouds , 1995 .

[65]  J. Phillips,et al.  A CME-driven solar wind disturbance observed at both low and high heliographic latitudes , 1995 .

[66]  M. Vandas,et al.  Evidence for a spheroidal structure of magnetic clouds , 1993 .

[67]  M. Vandas,et al.  Spheroidal models of magnetic clouds and their comparison with spacecraft measurements , 1993 .

[68]  J. Phillips,et al.  Counterstreaming solar wind halo electron events : solar cycle variations , 1992 .

[69]  L. Burlaga,et al.  Magnetic field structure of interplanetary magnetic clouds at 1 AU , 1990 .

[70]  K. G. Ivanov,et al.  Configuration, structure, and dynamics of magnetic clouds from solar flares in light of measurements on board Vega 1 and Vega 2 in January–February 1986 , 1989 .

[71]  L. Burlaga,et al.  Magnetic clouds and force‐free fields with constant alpha , 1988 .

[72]  D. Baker,et al.  Bidirectional solar wind electron heat flux events , 1987 .

[73]  H. Goldstein On the field configuration in magnetic clouds , 1983 .

[74]  F. Mariani,et al.  Magnetic loop behind an interplanetary shock: Voyager, Helios and IMP-8 observations , 1981 .

[75]  P. Caloi Interazioni Ira atmosfera ed idrosfera , 1963 .

[76]  C. Russell,et al.  Evolution of solar wind structures from 0.72 to 1 AU , 2008 .

[77]  J. Richardson,et al.  ICMES at very large distances , 2006 .

[78]  P. Démoulin,et al.  Large scale MHD properties of interplanetary magnetic clouds , 2005 .

[79]  John W. Belcher,et al.  A statistical study of the properties of interplanetary coronal mass ejections from 0.3 to 5.4 AU , 2005 .

[80]  M. Vandas,et al.  Magnetic clouds of oblate shapes , 2005 .

[81]  C. Russell,et al.  A new parameter to define interplanetary coronal mass ejections , 2005 .

[82]  C. Russell,et al.  The true dimensions of interplanetary coronal mass ejections , 2002 .

[83]  C. Cid,et al.  A non‐force‐free approach to the topology of magnetic clouds in the solar wind , 2002 .

[84]  N. Sidiropoulos,et al.  Study of CME structure and evolution deduced from ULYSSES/HI-SCALE energetic particle observations , 2000 .

[85]  C. Russell,et al.  Physics of magnetic flux ropes. Geophysical Monograph, No. 58 , 1990 .

[86]  K. Marubashi Structure of the interplanetary magnetic clouds and their solar origins , 1986 .