Synchronous reluctance machines (SynRMs) have drawn increasing attention in recent years owing to their advantages such as low cost, simple structure, ease of manufacture, and high robustness. The main obstacle to the promotion of SynRMs is severe parameter nonlinearity, which deteriorates drive performance. Sensorless control methods for SynRMs are critical technologies that can broaden the industrial applications of SynRMs. Various methods of parameter identification and sensorless control strategies are reviewed and discussed, including self-commissioning, which is analyzed in detail. Furthermore, sensorless control strategies that can improve the industrial application of SynRMs are described. Finally, future research trends concerning SynRMs are analyzed and discussed.