Wiener-Hermite Polynomial Expansion for Multivariate Gaussian Probability Measures

This paper introduces a new generalized polynomial chaos expansion (PCE) comprising multivariate Hermite orthogonal polynomials in dependent Gaussian random variables. The second-moment properties of Hermite polynomials reveal a weakly orthogonal system when obtained for a general Gaussian probability measure. Still, the exponential integrability of norm allows the Hermite polynomials to constitute a complete set and hence a basis in a Hilbert space. The completeness is vitally important for the convergence of the generalized PCE to the correct limit. The optimality of the generalized PCE and the approximation quality due to truncation are discussed. New analytical formulae are proposed to calculate the mean and variance of a generalized PCE approximation of a general output variable in terms of the expansion coefficients and statistical properties of Hermite polynomials. However, unlike in the classical PCE, calculating the coefficients of the generalized PCE requires solving a coupled system of linear equations. Besides, the variance formula of the generalized PCE contains additional terms due to statistical dependence among Gaussian variables. The additional terms vanish when the Gaussian variables are statistically independent, reverting the generalized PCE to the classical PCE. Numerical examples illustrate the generalized PCE approximation in estimating the statistical properties of various output variables.

[1]  Jasper V. Stokman,et al.  Orthogonal Polynomials of Several Variables , 2001, J. Approx. Theory.

[2]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[3]  S. Rahman,et al.  A generalized dimension‐reduction method for multidimensional integration in stochastic mechanics , 2004 .

[4]  Mircea Grigoriu,et al.  On the accuracy of the polynomial chaos approximation for random variables and stationary stochastic processes. , 2003 .

[5]  A Note on Gaussian Measures in a Banach Space , 1970 .

[6]  Jeroen Witteveen,et al.  POLYNOMIAL CHAOS EXPANSION FOR GENERAL MULTIVARIATE DISTRIBUTIONS WITH CORRELATED VARIABLES , 2014, 1406.5483.

[7]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[8]  Roger G. Ghanem,et al.  Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure , 2005, SIAM J. Sci. Comput..

[9]  KarniadakisGeorge Em,et al.  An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .

[10]  Christian Berg,et al.  Rotation invariant moment problems , 1991 .

[11]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[12]  G. Karniadakis,et al.  An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .

[13]  Thomas Y. Hou,et al.  Wiener Chaos expansions and numerical solutions of randomly forced equations of fluid mechanics , 2006, J. Comput. Phys..

[14]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[15]  Andrew J. Majda,et al.  Fundamental limitations of polynomial chaos for uncertainty quantification in systems with intermittent instabilities , 2013 .

[16]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[17]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[18]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[19]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[20]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.

[21]  Sharif Rahman,et al.  A Generalized ANOVA Dimensional Decomposition for Dependent Probability Measures , 2014, SIAM/ASA J. Uncertain. Quantification.

[22]  C. Withers A simple expression for the multivariate Hermite polynomials , 2000 .

[23]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[24]  R. Courant Methods of mathematical physics, Volume I , 1965 .

[25]  Gene H. Golub,et al.  Matrix computations , 1983 .

[26]  Björn Holmquist,et al.  The d-variate vector Hermite polynomial of order k , 1996 .

[27]  Pierre Del Moral,et al.  Mean Field Simulation for Monte Carlo Integration , 2013 .

[28]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[29]  Sharif Rahman,et al.  ORTHOGONAL POLYNOMIAL EXPANSIONS FOR SOLVING RANDOM EIGENVALUE PROBLEMS , 2011 .

[30]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[31]  David Slepian,et al.  On the Symmetrized Kronecker Power of a Matrix and Extensions of Mehler’s Formula for Hermite Polynomials , 1972 .

[32]  J. Cullum,et al.  Lanczos algorithms for large symmetric eigenvalue computations , 1985 .

[33]  Yuan Xu,et al.  Orthogonal Polynomials of Several Variables , 2014, 1701.02709.

[34]  O. Ernst,et al.  ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .