Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana

[1]  C. Hardtke,et al.  Flowering as a Condition for Xylem Expansion in Arabidopsis Hypocotyl and Root , 2008, Current Biology.

[2]  D. Weigel,et al.  HUA2 Caused Natural Variation in Shoot Morphology of A. thaliana , 2007, Current Biology.

[3]  Fabio Fornara,et al.  FT Protein Movement Contributes to Long-Distance Signaling in Floral Induction of Arabidopsis , 2007, Science.

[4]  Hiroo Fukuda,et al.  Transcriptional regulation in wood formation. , 2007, Trends in plant science.

[5]  L. Hennig,et al.  Polycomb-group proteins repress the floral activator AGL19 in the FLC-independent vernalization pathway. , 2006, Genes & development.

[6]  Y. Eshed,et al.  The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[7]  N. Battey,et al.  Mechanisms and function of flower and inflorescence reversion. , 2005, Journal of experimental botany.

[8]  Joonki Kim,et al.  CONSTANS Activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to Promote Flowering in Arabidopsis1[w] , 2005, Plant Physiology.

[9]  A. Samach,et al.  The Flowering Integrator FT Regulates SEPALLATA3 and FRUITFULL Accumulation in Arabidopsis Leavesw⃞ , 2005, The Plant Cell Online.

[10]  Wolfgang Busch,et al.  Integration of Spatial and Temporal Information During Floral Induction in Arabidopsis , 2005, Science.

[11]  E. Álvarez-Buylla Faculty Opinions recommendation of Comprehensive interaction map of the Arabidopsis MADS Box transcription factors. , 2005 .

[12]  A. Groover What genes make a tree a tree? , 2005, Trends in plant science.

[13]  Detlef Weigel,et al.  Dissection of floral induction pathways using global expression analysis , 2003, Development.

[14]  V. Grbić,et al.  The synergistic activation of FLOWERING LOCUS C by FRIGIDA and a new flowering gene AERIAL ROSETTE 1 underlies a novel morphology in Arabidopsis. , 2003, Genetics.

[15]  N. Battey,et al.  Molecular control and variation in the floral transition. , 2002, Current opinion in plant biology.

[16]  Q. Cronk Plant evolution and development in a post-genomic context , 2001, Nature Reviews Genetics.

[17]  E. Wisman,et al.  A MADS domain gene involved in the transition to flowering in Arabidopsis. , 2000, The Plant journal : for cell and molecular biology.

[18]  H. Thomas,et al.  Annuality, perenniality and cell death. , 2000, Journal of experimental botany.

[19]  J. S. Lee,et al.  The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. , 2000, Genes & development.

[20]  Z. Schwarz‐Sommer,et al.  Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. , 2000, Science.

[21]  J. Long,et al.  Initiation of axillary and floral meristems in Arabidopsis. , 2000, Developmental biology.

[22]  R. Martienssen,et al.  Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. , 2000, Development.

[23]  Y. Kobayashi,et al.  A pair of related genes with antagonistic roles in mediating flowering signals. , 1999, Science.

[24]  J. Chory,et al.  Activation tagging of the floral inducer FT. , 1999, Science.

[25]  D. Weigel,et al.  Floral determination and expression of floral regulatory genes in Arabidopsis. , 1997, Development.

[26]  W. Martin,et al.  Island colonization and evolution of the insular woody habit in Echium L. (Boraginaceae). , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[27]  A. Santos‐Guerra,et al.  A common origin for woody Sonchus and five related genera in the Macaronesian islands: molecular evidence for extensive radiation. , 1996, Proceedings of the National Academy of Sciences of the United States of America.