Motion reversal modeling for a Brownian particle affected by nonequilibrium fluctuations

[1]  V. M. Rozenbaum Constructive role of chaos: Brownian motors and winning strategies in game theory , 2020 .

[2]  M. Povinelli,et al.  Near-Field, On-Chip Optical Brownian Ratchets. , 2016, Nano letters.

[3]  P. Hoffmann,et al.  How molecular motors extract order from chaos (a key issues review) , 2016, Reports on progress in physics. Physical Society.

[4]  D. Cubero,et al.  Brownian Ratchets: From Statistical Physics to Bio and Nano-motors , 2016 .

[5]  Anatoly B. Kolomeisky,et al.  Motor Proteins and Molecular Motors , 2015 .

[6]  V. M. Rozenbaum Low-temperature operational regime of an adiabatic Brownian motor , 2014 .

[7]  D. Chowdhury Stochastic mechano-chemical kinetics of molecular motors: A multidisciplinary enterprise from a physicist’s perspective , 2012, 1207.6070.

[8]  M. Dekhtyar,et al.  Photoinduced molecular transport in biological environments based on dipole moment fluctuations. , 2006, The journal of physical chemistry. B.

[9]  F. Marchesoni,et al.  Brownian motors , 2004, cond-mat/0410033.

[10]  T. Y. Tsong,et al.  Catalytic Wheel as a Brownian Motor , 2004 .

[11]  J. M. R. Parrondo,et al.  Brownian motion and gambling: from ratchets to paradoxical games , 2004, ArXiv.

[12]  N. Hirokawa,et al.  Mechanism of the single-headed processivity: diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Derek Abbott,et al.  Game theory: Losing strategies can win by Parrondo's paradox , 1999, Nature.

[14]  N. Hirokawa,et al.  A processive single-headed motor: kinesin superfamily protein KIF1A. , 1999, Science.

[15]  A. Ajdari,et al.  Force-Free Motion in Asymmetric Structures: A Mechanism without Diffusive Steps , 1994 .

[16]  Steven M. Block,et al.  Force and velocity measured for single kinesin molecules , 1994, Cell.