First Principles Quasiharmonic Thermoelasticity of Mantle Minerals

Thermodynamic (Anderson 2005) and elastic properties (Musgrave 1970) of minerals provide the fundamental information needed to analyze seismic observations and to model Earth’s dynamic state. The connection between pressure, temperature, chemical composition, and mineralogy that produce seismic velocity gradients, heterogeneities, and discontinuities, can be established with knowledge of thermoelastic and thermodynamic equilibrium properties of single phases and their aggregates. There is a broad-based need in solid Earth geophysics for these thermoelastic properties to model the Earth. However, the materials and conditions of the Earth’s interior present several challenges. The chemical composition of the Earth’s mantle is complex with at least five major oxide components and tens of solid phases. Today, this type of challenge is more effectively addressed by a combination of experimental and computational methods. Experiments offer accurate information at lower pressures and temperatures, while computations offer more complete and detailed information at higher pressures and temperatures, where experimental uncertainties are large and conditions difficult to control in the laboratory. The overwhelming success of density functional theory (Hohenberg and Kohn 1964; Kohn and Sham 1965) combined with the quasiharmonic approximation (QHA) (Born and Huang 1956; Wallace 1972) for computations of thermodynamic properties of major mantle minerals has been reviewed in this book (Wentzcovitch et al. 2010). Although these properties were cited and compared with experiments only at ambient conditions, in general, quasiharmonic calculations perform even better at higher pressures (see references in Wentzcovitch et al. 2010). In this paper we review the extension of these calculations to high pressure and high temperature elasticity. There are important exceptions, such as CaSiO3-perovskite, whose high temperature structure is stabilized by anharmonic fluctuations (Stixrude et al. 1996). Such cases cannot be addressed using the QHA and one must resort of molecular dynamics (MD) in some form. Great progress has …

[1]  J. Tsuchiya,et al.  MgSiO3 postperovskite at D'' conditions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[2]  B. Romanowicz Can we resolve 3D density heterogeneity in the lower mantle? , 2001 .

[3]  S. Sinogeikin,et al.  Elasticity of single crystal and polycrystalline MgSiO3 perovskite by Brillouin spectroscopy , 2004 .

[4]  Y. Dimitrienko,et al.  Elastic properties of composite materials , 2010 .

[5]  J. Tsuchiya,et al.  Vibrational and thermodynamic properties of MgSiO$_3$ post-perovskite , 2005 .

[6]  M. Kunz,et al.  P-V-T EQUATION OF STATE OF MGSIO3 PEROVSKITE , 1998 .

[7]  Y. Ohishi,et al.  Post-Perovskite Phase Transition in MgSiO3 , 2004, Science.

[8]  Stefano Baroni,et al.  DENSITY-FUNCTIONAL PERTURBATION THEORY , 2005 .

[9]  Wang,et al.  Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. , 1991, Physical review. B, Condensed matter.

[10]  Weidner,et al.  Elasticity of single-crystal MgO to 8 gigapascals and 1600 kelvin , 1998, Science.

[11]  R. Wentzcovitch,et al.  CaSiO3 perovskite at lower mantle pressures , 2005 .

[12]  T. Lay,et al.  Post-Perovskite: The Last Mantle Phase Transition , 2007 .

[13]  Bijaya B. Karki,et al.  Origin of lateral variation of seismic wave velocities and density in the deep mantle , 2001 .

[14]  Stefano de Gironcoli,et al.  Anomalous thermodynamic properties in ferropericlase throughout its spin crossover transition , 2009 .

[15]  S. Sinogeikin,et al.  High‐pressure sound velocities and elasticity of aluminous MgSiO3 perovskite to 45 GPa: Implications for lateral heterogeneity in Earth's lower mantle , 2005 .

[16]  J. Tromp,et al.  Normal-mode and free-Air gravity constraints on lateral variations in velocity and density of Earth's mantle , 1999, Science.

[17]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[18]  S. Sinogeikin,et al.  Single-crystal elasticity of mgo at high pressure , 1999 .

[19]  M. Gurnis,et al.  Evidence for a ubiquitous seismic discontinuity at the base of the mantle , 1999, Science.

[20]  L. Stixrude,et al.  Elasticity of (Mg,Fe)SiO3‐perovskite at high pressures , 2002 .

[21]  G. Masters,et al.  On the resolution of density within the Earth , 2003 .

[22]  G. M. Anderson,et al.  Thermodynamics of Natural Systems , 1995 .

[23]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[24]  A. Yeganeh-Haeri Synthesis and re-investigation of the elastic properties of single-crystal magnesium silicate perovskite , 1994 .

[25]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of polycrystals , 1962 .

[26]  C. J. McGrath,et al.  Effect of exchange rate return on volatility spill-over across trading regions , 2012 .

[27]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[28]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[29]  Geoffrey D. Price,et al.  Ab initio study of MgSiO3 and CaSiO3 perovskites at lower-mantle pressures , 1995 .

[30]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[31]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[32]  Gabi Laske,et al.  The Relative Behavior of Shear Velocity, Bulk Sound Speed, and Compressional Velocity in the Mantle: Implications for Chemical and Thermal Structure , 2013 .

[33]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[34]  E. Garnero A New Paradigm for Earth's Core-Mantle Boundary , 2004, Science.

[35]  D. Wallace,et al.  Thermodynamics of Crystals , 1972 .

[36]  R. Hazen,et al.  High-pressure crystal chemistry of MgSiO3 perovskite , 1990 .

[37]  Stefano de Gironcoli,et al.  Ab initio calculation of phonon dispersions in semiconductors. , 1991, Physical review. B, Condensed matter.

[38]  John P. Brodholt,et al.  Letters to Nature 934 , 2022 .

[39]  D. Yuen,et al.  Anomalous compressibility of ferropericlase throughout the iron spin cross-over , 2009, Proceedings of the National Academy of Sciences.

[40]  T. Lay,et al.  A lower mantle S-wave triplication and the shear velocity structure of D" , 1983 .

[41]  Graeme Ackland,et al.  Structure and elasticity of MgO at high pressure , 1997 .

[42]  R. Cohen,et al.  Effect of Chemistry on the Physical Properties of Perovskite and Post‐Perovskite , 2005 .

[43]  A. Dziewoński,et al.  Joint inversions of seismic and geodynamic data for models of three—dimensional mantle heterogeneity , 1994 .

[44]  I. Jackson Elasticity, composition and temperature of the Earth’s lower mantle: a reappraisal , 1998 .

[45]  P. Carrier,et al.  Quasiharmonic elastic constants corrected for deviatoric thermal stresses , 2008, 0808.3373.

[46]  John H. Woodhouse,et al.  Mapping the upper mantle: Three‐dimensional modeling of earth structure by inversion of seismic waveforms , 1984 .

[47]  J. Watt,et al.  The Elastic Properties of Composite Materials , 1976 .

[48]  Jun Tsuchiya,et al.  First-principles prediction of crystal structures at high temperatures using the quasiharmonic approximation , 2007 .

[49]  E. R. Engdahl,et al.  Evidence for deep mantle circulation from global tomography , 1997, Nature.

[50]  M. Mehl,et al.  Calculated elastic and thermal properties of MGO at high pressures and temperatures , 1990 .

[51]  Y. Ohishi,et al.  Elasticity of MgO to 130 GPa: Implications for lower mantle mineralogy , 2008 .

[52]  J. Wookey,et al.  The effect of temperature on the seismic anisotropy of the perovskite and post-perovskite polymorphs of MgSiO 3 , 2004 .

[53]  Martin,et al.  Quantum-mechanical theory of stress and force. , 1985, Physical review. B, Condensed matter.

[54]  S. Karato,et al.  High pressure elastic anisotropy of MgSiO3 perovskite and geophysical implications , 1998 .

[55]  Lars Stixrude,et al.  Thermodynamics of mantle minerals – I. Physical properties , 2005 .

[56]  M. Klein,et al.  Second-order elastic constants of a solid under stress , 1965 .

[57]  Baosheng Li,et al.  Elasticity of MgO to 11 GPa with an independent absolute pressure scale: Implications for pressure calibration , 2006 .

[58]  Duffy,et al.  Equation of state and shear strength at multimegabar pressures: Magnesium oxide to 227 GPa. , 1995, Physical review letters.

[59]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[60]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[61]  Burns,et al.  Low-temperature thermal properties of ferroelectrics. , 1985, Physical review. B, Condensed matter.

[62]  R. Downs,et al.  High-pressure crystal chemistry , 1998 .

[63]  O. Anderson,et al.  Measured elastic moduli of single-crystal MgO up to 1800 K , 1989 .

[64]  Stefano de Gironcoli,et al.  Ab initio lattice dynamics of MgSiO3 perovskite at high pressure , 2000 .

[65]  G. D. Price,et al.  The composition and geotherm of the lower mantle: constraints from the elasticity of silicate perovskite , 2000 .

[66]  Wenbo Xu,et al.  The effect of bulk composition and temperature on mantle seismic structure , 2008 .

[67]  R. Wentzcovitch,et al.  Effective semiempirical ansatz for computing anharmonic free energies , 2009 .

[68]  L. Stixrude,et al.  Thermodynamics of the Earth’s Mantle , 2010 .

[69]  Renata M. Wentzcovitch,et al.  First principles molecular dynamics of Li: Test of a new algorithm , 1991 .

[70]  J. Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .

[71]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[72]  T. Kondo,et al.  Thermoelastic properties of MgSiO3 perovskite determined by in situ X ray observations up to 30 GPa and 2000 K , 1996 .

[73]  D. Yamazaki,et al.  Fabric development in (Mg,Fe)O during large strain, shear deformation: implications for seismic anisotropy in Earth's lower mantle , 2002 .

[74]  Price,et al.  Ab initio molecular dynamics with variable cell shape: Application to MgSiO3. , 1993, Physical review letters.

[75]  A. Oganov,et al.  Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D″ layer , 2004, Nature.

[76]  Renata M. Wentzcovitch,et al.  Thermodynamic properties and phase relations in mantle minerals investigated by first principles quasiharmonic theory , 2010 .

[77]  Renata M. Wentzcovitch,et al.  High‐pressure elastic properties of major materials of Earth's mantle from first principles , 2001 .

[78]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[79]  G. D. Price,et al.  Ab initio molecular dynamics study of elasticity of akimotoite MgSiO3 at mantle conditions , 2009 .

[80]  L. Stixrude,et al.  Phase stability and shear softening in CaSiO3 perovskite at high pressure , 2007 .

[81]  Stefano de Gironcoli,et al.  Thermoelastic properties of MgSiO(3)-perovskite: insights on the nature of the Earth's lower mantle. , 2004, Physical review letters.

[82]  R. Cohen,et al.  Constraints on lower mantle composition from molecular dynamics simulations of MgSiO3 perovskite , 2002 .

[83]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[84]  T. Kikegawa,et al.  Thermal expansivity of MgSiO3 perovskite under high pressures up to 20 GPa , 1995 .

[85]  A. Dziewoński,et al.  Global Images of the Earth's Interior , 1987, Science.

[86]  R. Wentzcovitch,et al.  Spin-State Crossover of Iron in Lower-Mantle Minerals: Results of DFT+U Investigations , 2010 .

[87]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[88]  K. Hirose,et al.  Pressure-volume-temperature relations in MgO: An ultrahigh pressure-temperature scale for planetary sciences applications , 2008 .

[89]  Yusheng Zhao,et al.  P-V-T equation of state of (Mg, Fe)SiO3 perovskite: constraints on composition of the lower mantle , 1994 .

[90]  Jianzhong Zhang,et al.  Pressure and temperature dependence of elastic wave velocity of MgSiO3 perovskite and the composition of the lower mantle , 2005 .

[91]  R. Hazen,et al.  Single crystal X-ray diffraction study of MgSiO3 perovskite from 77 to 400 K , 1989 .

[92]  H. Spetzler,et al.  Equation of State of Polycrystalline and Single‐Crystal MgO to 8 Kilobars and 800°K , 1970 .

[93]  Stefano de Gironcoli,et al.  First-principles determination of elastic anisotropy and wave velocities of MgO at lower mantle conditions , 1999, Science.

[94]  G. D. Price,et al.  Elasticity of Mg2SiO4 ringwoodite at mantle conditions , 2006 .

[95]  G. D. Price,et al.  Elasticity of CaSiO3 perovskite at high pressure and high temperature , 2006 .

[96]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[97]  R. Wentzcovitch,et al.  Invariant molecular-dynamics approach to structural phase transitions. , 1991, Physical review. B, Condensed matter.

[98]  S. Grand Mantle shear structure beneath the Americas and surrounding oceans , 1994 .

[99]  J. Tsuchiya,et al.  Phase transition in MgSiO 3 perovskite in the earth's lower mantle , 2004 .

[100]  S. Chaplot,et al.  Lattice dynamics of MgSiO 3 perovskite , 1988 .

[101]  R. Cohen,et al.  Prediction of phase transition in CaSiO3 perovskite and implications for lower mantle structure , 1996, physics/9610023.

[102]  Liebermann,et al.  Ultrasonic shear wave velocities of MgSiO3 perovskite at 8 GPa and 800 K and lower mantle composition , 1998, Science.

[103]  P. Giannozzi,et al.  Density-Functional Perturbation Theory for Quasi-Harmonic Calculations , 2010 .

[104]  L. Thomsen The fourth-order anharmonic theory: Elasticity and stability , 1972 .

[105]  L. Stixrude,et al.  Influence of phase transformations on lateral heterogeneity and dynamics in Earth's mantle , 2007 .

[106]  H. Mao,et al.  Thermoelasticity of Silicate Perovskite and Magnesiow�stite and Stratification of the Earth's Mantle , 1992, Science.

[107]  J. Watt,et al.  Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with orthorhombic symmetry , 1979 .

[108]  R. Wentzcovitch,et al.  Vibrational and thermodynamic properties of wadsleyite: A density functional study , 2007 .

[109]  Stefano de Gironcoli,et al.  First principles thermoelasticity of MgSiO3‐perovskite: Consequences for the inferred properties of the lower mantle , 2001 .

[110]  J. M. Brown,et al.  Thermodynamic parameters in the Earth as determined from seismic profiles , 1981 .

[111]  G. D. Price,et al.  Elasticity of CaSiO 3 perovskite at high pressure and high temperature , 2006 .

[112]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[113]  P. Dobson,et al.  Physical Properties of Crystals – Their Representation by Tensors and Matrices , 1985 .

[114]  M. Alfredsson,et al.  Elasticity of (Mg, Fe)(Si, Al)O 3 -perovskite at high pressure , 2005 .

[115]  H. Mao,et al.  Elasticity of MgO and a primary pressure scale to 55 GPa. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[116]  Stefano de Gironcoli,et al.  High-pressure lattice dynamics and thermoelasticity of MgO , 2000 .

[117]  G. Davies,et al.  Effective elastic moduli under hydrostatic stress—I. quasi-harmonic theory , 1974 .