Integral equation methods from grating theory to photonics: an overview and new approaches for conical diffraction

The boundary integral equation method (BIM) was one of the first methods in grating theory. It has been used for the investigation of diffraction gratings of extremely different kinds as well as for photonic crystal diffraction gratings. Besides an overview of three of the most important BIMs for in-plane diffraction, we present a new BIM for gratings in a conical mounting with one profile as well as for separated multilayer gratings with photonics inclusions using a common description for both approaches. In numerical examples, (1) blazing in conical mounting is demonstrated at a photonic crystal diffraction grating, (2) the excellent conical efficiency convergence for a plasmonic structure of two stacked silver rod gratings is shown, and (3) the transmission for conical incidence is studied at a blazed grating with large period-to-wavelength ratio.

[1]  D. Maystre A new theory for multiprofile, buried gratings , 1978 .

[2]  Daniel Maystre,et al.  Electromagnetic study of photonic band gaps , 1994 .

[3]  John F. Seely,et al.  Normal incidence multilayer gratings for the extreme ultraviolet region: experimental measurements and computational modeling , 1999, Optics & Photonics.

[4]  Y. Lu,et al.  Dirichlet-to-Neumann map method for analyzing periodic arrays of cylinders with oblique incident waves , 2009 .

[5]  H. Herzig Micro-Optics : Elements, Systems And Applications , 1997 .

[6]  Leonid I Goray,et al.  Efficiencies of master, replica, and multilayer gratings for the soft-x-ray-extreme-ultraviolet range: modeling based on the modified integral method and comparisons with measurements. , 2002, Applied optics.

[7]  M. Hutley,et al.  The Optical Properties of 'Moth Eye' Antireflection Surfaces , 1982 .

[8]  Christoph Menke,et al.  Optical systems design with integrated rigorous vector diffraction , 2005, SPIE Optical Systems Design.

[9]  Frank Wyrowski,et al.  V Diffractive optics: Electromagnetic approach , 2000 .

[10]  R. Güther,et al.  Herstellung und untersuchung von holographischen gittern für den infraroten spektralbereich , 1984 .

[11]  D. Wilton,et al.  Electromagnetic scattering by surfaces of arbitrary shape , 1980 .

[12]  Frank Wyrowski,et al.  Integral equation method with parametrization of grating profile theory and experiments , 1996 .

[13]  E. Loewen,et al.  Diffraction efficiency of echelles working in extremely high orders. , 1996, Applied optics.

[14]  Leonid I. Goray Rigorous integral method in application to computing diffraction on relief gratings working in wavelength range from microwaves to x ray , 1995, Optics & Photonics.

[15]  Andreas Pomp The Integral Method for Coated Gratings: Computational Cost , 1991 .

[16]  Yunlong Sheng,et al.  Analysis and synthesis of circular diffractive lens with local linear grating model and rigorous coupled-wave theory , 1997 .

[17]  D. Maystre,et al.  Photonic crystal diffraction gratings. , 2001, Optics express.

[18]  F. Lederer,et al.  Engineering the randomness for enhanced absorption in solar cells , 2008 .

[19]  Mohammad R. Taghizadeh,et al.  Synthetic diffractive optics in the resonance domain , 1992 .

[20]  Jari Turunen,et al.  Electromagnetic theory and design of diffractive-lens arrays , 1993 .

[21]  Daniel Maystre,et al.  A new general integral theory for dielectric coated gratings , 1978 .

[22]  Bernd Kleemann,et al.  DOEs for color correction in broad band optical systems: validity and limits of efficiency approximations , 2010, International Optical Design Conference.

[23]  Gunther Schmidt,et al.  Boundary Integral Methods for Periodic Scattering Problems , 2010 .

[24]  J. Plumey,et al.  Rigorous and efficient grating-analysis method made easy for optical engineers. , 1999, Applied optics.

[25]  L. Botten A STUDY OF BI-METALLIC GRATINGS , 1980 .

[26]  C. M. Linton,et al.  The Green's Function for the Two-Dimensional Helmholtz Equation in Periodic Domains , 1998 .

[27]  Bernd H. Kleemann Elektromagnetische Analyse von Oberflächengittern von IR bis XUV mittels einer parametrisierten Randintegralmethode: Theorie, Vergleich und Anwendung , 2003 .

[28]  Joseph N. Mait,et al.  Design of subwavelength diffractive optical elements using a hybrid finite element-boundary element method , 1996, Photonics West.

[29]  Bernd Kleemann,et al.  Independent electromagnetic optimization of the two coating thicknesses of a dielectric layer on the facets of an echelle grating in Littrow mount , 2004 .

[30]  Frank Wyrowski,et al.  Diffractive Optics for Industrial and Commercial Applications , 1997 .

[31]  Mohammad R. Taghizadeh,et al.  Rigorous diffraction analysis of Dammann gratings , 1991 .

[32]  E. Loewen,et al.  Diffraction Gratings and Applications , 2018 .

[33]  Joseph N. Mait,et al.  Hybrid finite element-boundary element method for vector modeling diffractive optical elements , 1996, Photonics West.

[34]  John F. Seely,et al.  Spectral Separation of the Efficiencies of the Inside and Outside Orders of Soft X-Ray - Extreme Ultraviolet Gratings at Near Normal Incidence , 2006 .

[35]  D. Maystre,et al.  I Rigorous Vector Theories of Diffraction Gratings , 1984 .

[36]  W. Niethammer Numerical application of Euler's series transformation and its generalizations , 1980 .

[37]  Leonid I. Goray Modified integral method for weak convergence problems of light scattering on relief grating , 2001, SPIE OPTO.

[38]  D. Maystre,et al.  Sur la diffraction d'une onde plane par un reseau metallique de conductivite finie , 1972 .

[39]  B. Kleemann,et al.  Zonal diffraction efficiencies and imaging of micro-Fresnel lenses , 1998 .

[40]  Andreas Rathsfeld,et al.  On a fast integral equation method for diffraction gratings , 2007 .

[41]  Y. Lu,et al.  Analyzing Diffraction Gratings by a Boundary Integral Equation Neumann-to-dirichlet Map Method , 2022 .

[42]  O. Bryngdahl,et al.  Rigorous concept for the design of diffractive microlenses with high numerical apertures , 1997 .

[43]  D. Maystre,et al.  Integral method for echelles covered with lossless or absorbing thin dielectric layers. , 1999, Applied optics.

[44]  Gunther Schmidt,et al.  Solving conical diffraction grating problems with integral equations. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[45]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[46]  T. Mitsuyu,et al.  Reflection micro-Fresnel lenses and their use in an integrated focus sensor. , 1989, Applied Optics.

[47]  Joseph N. Mait,et al.  Boundary element method for vector modeling diffractive optical elements , 1995, Photonics West.

[48]  E. Loewen,et al.  Echelles: scalar, electromagnetic, and real-groove properties. , 1995, Applied optics.

[49]  D. Maystre Sur la diffraction d'une onde plane electromagnetique par un reseau metallique , 1973 .

[50]  Dennis W. Prather,et al.  Boundary integral methods applied to the analysis of diffractive optical elements , 1997 .

[51]  Eytan Barouch,et al.  Three-dimensional nonplanar lithography simulation using a periodic fast multipole method , 1997, Advanced Lithography.

[52]  J Turunen,et al.  Parametric optimization of multilevel diffractive optical elements by electromagnetic theory. , 1992, Applied optics.

[53]  Leonid I. Goray,et al.  Numerical modelling of nonconformal gratings by the modified integral method , 2002 .

[54]  Michel Neviere,et al.  Classical differential method, the rigorous coupled wave theory, and the modal method: comparative analysis of convergence properties in staircase approximation , 2001, SPIE Optics + Photonics.

[55]  K. Oughstun,et al.  Electromagnetic theory of gratings , 1982, IEEE Journal of Quantum Electronics.

[56]  B. Kleemann,et al.  Metal Gratings with Dielectric Coating of Variable Thickness within a Period , 1991 .

[57]  Leonid I. Goray Modified integral method and real electromagnetic properties of echelles , 2001, SPIE OPTO.

[58]  Lindsay C. Botten,et al.  A New Formalism for Transmission Gratings , 1978 .

[59]  Eytan Barouch,et al.  Three-dimensional mask transmission simulation using a single integral equation method , 1998, Advanced Lithography.

[60]  D. Tsai,et al.  Spatial filtering by using cascading plasmonic gratings , 2009 .

[61]  Johannes Gatzke,et al.  Design and efficiency characterization of diffraction gratings for applications in synchrotron monochromators by electromagnetic methods and its comparison with measurement , 1997, Optics & Photonics.