Explicit construction of quadratic Lyapunov functions for the small gain, positivity, circle and Popov theorems and their application to robust stability

Lyapunov function proofs of sufficient conditions for asymptotic stability are given for feedback interconnections of bounded real and positive real transfer functions. Two cases are considered: a proper bounded real (resp., positive real) transfer function with a bounded real (resp., positive real) time-varying memoryless nonlinearity; and two strictly proper bounded real (resp., positive real) transfer functions. A similar treatment is given for the circle and Popov theorems. Application of these results to robust stability with time-varying bounded real, positive real, and sector-bounded uncertainty is discussed.<<ETX>>

[1]  R. E. Kalman,et al.  Control System Analysis and Design Via the “Second Method” of Lyapunov: II—Discrete-Time Systems , 1960 .

[2]  S. Kodama,et al.  Stability of nonlinear sampled-data control systems , 1962 .

[3]  S. Kodama,et al.  Stability of a class of discrete control systems containing a nonlinear gain element , 1962 .

[4]  J. Pearson A note on the existence of Liapunov functions for a class of discrete-time systems , 1963 .

[5]  R. Kálmán LYAPUNOV FUNCTIONS FOR THE PROBLEM OF LUR'E IN AUTOMATIC CONTROL. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[6]  G. P. Szegö,et al.  ON THE ABSOLUTE STABILITY OF SAMPLED-DATA CONTROL SYSTEMS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[7]  J. Bongiorno,et al.  An extension of the Nyquist-Barkhausen stability criterion to linear lumped-parameter systems with time-varying elements , 1963 .

[8]  I. W. Sandberg On the properties of some systems that distort signals — II , 1963 .

[9]  Jr. J.J. Bongiorno Real-frequency stability criteria for linear time-varying systems , 1964 .

[10]  Ya. Z. Tsypkin,et al.  A Criterion for Absolute Stability of Automatic Pulse Systems with Monotonic Characteristics of the Nonlinear Element , 1964 .

[11]  I. Sandberg A frequency-domain condition for the stability of feedback systems containing a single time-varying nonlinear element , 1964 .

[12]  J. E. Gibson,et al.  On the Asymptotic Stability of a Class of Saturating Sampled-Data Systems , 1964, IEEE Transactions on Applications and Industry.

[13]  J. Pearson,et al.  On the absolute stability of sampled-data systems: The "Indirect control" case , 1964 .

[14]  J. P. Lasalle,et al.  Absolute Stability of Regulator Systems , 1964 .

[15]  E. I. Jury,et al.  On the absolute stability of nonlinear sample-data systems , 1964 .

[16]  E. I. Jury,et al.  On the stability of a certain class of nonlinear sampled-data systems , 1964 .

[17]  K. Meyer On the Existence of Lyapunov Function for the Problem of Lur’e , 1965 .

[18]  K. Meyer,et al.  LIAPUNOV FUNCTIONS FOR THE PROBLEM OF LUR'E. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[19]  S. Lefschetz Stability of nonlinear control systems , 1966 .

[20]  I. W. Sandberg,et al.  On the boundedness of solutions of nonlinear integral equations , 1965 .

[21]  Charles A. Desoer,et al.  A generalization of the Popov criterion , 1965 .

[22]  P. Graefe Linear stochastic systems , 1966 .

[23]  Roger W. Brockett,et al.  The status of stability theory for deterministic systems , 1966 .

[24]  G. Zames On the input-output stability of time-varying nonlinear feedback systems--Part II: Conditions involving circles in the frequency plane and sector nonlinearities , 1966 .

[25]  G. Zames On the input-output stability of time-varying nonlinear feedback systems Part one: Conditions derived using concepts of loop gain, conicity, and positivity , 1966 .

[26]  B. Anderson A SYSTEM THEORY CRITERION FOR POSITIVE REAL MATRICES , 1967 .

[27]  Roger W. Brockett,et al.  Frequency-domain instability criteria for time-varying and nonlinear systems , 1967 .

[28]  R. O'Shea,et al.  A frequency-time domain stability criterion for sampled-data systems , 1967, IEEE Transactions on Automatic Control.

[29]  A. Bergen,et al.  The parabola test for absolute stability , 1967 .

[30]  B. Anderson,et al.  A generalization of the Popov criterion , 1968 .

[31]  Kumpati S. Narendra,et al.  Stability Analysis of Nonlinear and Time-Varying Discrete Systems , 1968 .

[32]  P. Falb,et al.  Stability Conditions for Systems with Monotone and Slope-Restricted Nonlinearities , 1968 .

[33]  K. Narendra,et al.  An off-axis circle criterion for stability of feedback systems with a monotonic nonlinearity , 1968 .

[34]  B. Anderson,et al.  Liapunov function generation for a class of time-varying systems , 1968 .

[35]  Jan C. Willems,et al.  Stability, Instability, Invertibility and Causality , 1969 .

[36]  Brian D. O. Anderson,et al.  Discrete positive-real fu nctions and their applications to system stability , 1969 .

[37]  An extended frequency-domain stability criterion for a class of sampled-data systems , 1970 .

[38]  G. P. Szegö,et al.  Stability theory of dynamical systems , 1970 .

[39]  J. Willems Least squares stationary optimal control and the algebraic Riccati equation , 1971 .

[40]  Dragoslav D. Šiljak,et al.  Exponential absolute stability of discrete systems , 1971 .

[41]  J. Willems The Generation of Lyapunov Functions for Input-Output Stable Systems , 1971 .

[42]  Jose B. Cruz,et al.  Feedback systems , 1971 .

[43]  Brian D. O. Anderson,et al.  The small-gain theorem, the passivity theorem and their equivalence , 1972 .

[44]  R. Saeks,et al.  The analysis of feedback systems , 1972 .

[45]  D. Siljak Algebraic criteria for positive realness relative to the unit circle , 1973 .

[46]  Vasile Mihai Popov,et al.  Hyperstability of Control Systems , 1973 .

[47]  J. Willems The circle criterion and quadratic Lyapunov functions for stability analysis , 1973 .

[48]  Circle Criteria for Stability in Hilbert Space , 1975 .

[49]  B. Molinari The stabilizing solution of the discrete algebraic riccati equation , 1975 .

[50]  P. A. Cook Conditions for the absence of limit cycles , 1976 .

[51]  J. Pearson Linear multivariable control, a geometric approach , 1977 .

[52]  Ljubomir T. Grujić,et al.  Solutions for the Lurie-Postnikov and Aizerman problems , 1978 .

[53]  J. Willems,et al.  Synthesis of state feedback control laws with a specified gain and phase margin , 1980 .

[54]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[55]  A. Mees,et al.  The Popov criterion for multiple-loop feedback systems , 1980 .

[56]  R. P. Iwens,et al.  Stability of Large Space Structure Control Systems Using Positivity Concepts , 1981 .

[57]  Lj. T. Grujlć,et al.  Lyapunov-like solutions for stability problems of the most general stationary Lurie-Postnikov systems , 1981 .

[58]  A. I. Barkin,et al.  Method of power transformations for analysis of stability of nonlinear control systems , 1983 .

[59]  Ian R. Petersen,et al.  A Riccati Equation Approach to the Design of Stabilizing Controllers and Observers for a Class of Uncertain Linear Systems , 1985, 1985 American Control Conference.

[60]  P. Vaidyanathan The discrete-time bounded-real lemma in digital filtering , 1985 .

[61]  Tsu-Tian Lee,et al.  GAIN AND PHASE MARGINS FOR DISCRETE-TIME-SYSTEMS , 1986 .

[62]  Ljubomir T. Grujic,et al.  On robustness of Lurie systems with multiple non-linearities , 1987, Autom..

[63]  J. Wen Time domain and frequency domain conditions for strict positive realness , 1988 .

[64]  Cheng-Chih Chu,et al.  On Discrete Inner-Outer and Spectral Factorizations , 1988, 1988 American Control Conference.

[65]  D. Bernstein,et al.  The optimal projection equations with Petersen-Hollot bounds: robust stability and performance via fixed-order dynamic compensation for systems with structured real-valued parameter uncertainty , 1988 .

[66]  Panajotis Agathoklis,et al.  The discrete-time strictly bounded-real lemma and the computation of positive definite solutions to the 2-D Lyapunov equation , 1989 .

[67]  A. Madiwale Design of LQG/H∞ dynamic compensators for time varying non-linear feedback systems: circle criterion and guaranteed gain and phase margins , 1989, 1989 American Control Conference.

[68]  Dennis S. Bernstein,et al.  Robust stability and performance via fixed-order dynamic compensation with guaranteed cost bounds , 1990, Math. Control. Signals Syst..

[69]  D. Bernstein,et al.  Robust stability and performance analysis for state-space systems via quadratic Lyapunov bounds , 1990 .

[70]  R. Lozano-Leal,et al.  Strictly positive real transfer functions revisited , 1990, 29th IEEE Conference on Decision and Control.

[71]  J. S. Gibson,et al.  A first-order Lyapunov robustness method for linear systems with uncertain parameters , 1990 .

[72]  S. Joshi,et al.  Strictly positive real transfer functions revisited , 1990 .

[73]  P. Khargonekar,et al.  Robust stabilization of uncertain linear systems: quadratic stabilizability and H/sup infinity / control theory , 1990 .

[74]  D. S. Bernstein,et al.  Robust stabilization with positive real uncertainty: beyond the small gain theorem , 1990, 29th IEEE Conference on Decision and Control.

[75]  D.S. Bernstein,et al.  Parameter-dependent Lyapunov functions, constant real parameter uncertainty, and the Popov criterion in robust analysis and synthesis. 1 , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[76]  D. Bernstein,et al.  Robust stabilization with positive real uncertainty: beyond the small gain theory , 1991 .

[78]  Dennis S. Bernstein,et al.  Robust Stability and Performance Via Fixed-Order Dynamic Compensation: The Discrete-Time Case , 1992, 1992 American Control Conference.

[79]  Dennis S. Bernstein,et al.  Parameter-Dependent Lyapunov Functions and the Discrete-Time Popov Criterion for Robust Analysis and Synthesis , 1992, 1992 American Control Conference.

[80]  D. Bernstein,et al.  SMALL GAIN VERSUS POSITIVE REAL MODELING OF REAL PARAMETER UNCERTAINTY , 1992 .

[81]  D. Bernstein,et al.  Explicit construction of quadratic lyapunov functions for the small gain, positivity, circle, and popov theorems and their application to robust stability. part II: Discrete-time theory , 1993 .