Beyond biofuels: assessing global land use for domestic consumption of biomass: a conceptual and empirical contribution to sustainable management of global resources.

Consumption of natural resources should not exceed sustainable levels. The increasing use of biofuels and to some extent biomaterials, on top of rising food and feed demands, is causing countries to use a growing amount of global land, which may lead to land use conflicts and the expansion of cropland and intensive cultivation at the expense of natural ecosystems. Selective product certification cannot control the land use change triggered by growing overall biomass consumption. We propose a comprehensive approach to account for the global land use of countries for their domestic consumption, and assess this level with regard to globally acceptable levels of resource use, based on the concept of safe operating space. It is shown that the European Union currently uses one-third more cropland than globally available on a per capita basis and that with constant consumption levels it would exceed its fair share of acceptable resource use in 2030. As the use of global forests to meet renewable energy targets is becoming a concern, an approach to account for sustainable levels of timber flows is also proposed, based on the use of net annual increment, exemplified with preliminary data for Switzerland. Altogether, our approach would integrate the concept of sustainable consumption into national resource management plans; offering a conceptual basis and concrete reference values for informed policy making and urging countries to monitor and adjust their levels of resource consumption in a comprehensive way, respectful of the limits of sustainable supply.

[1]  R. Gottlob,et al.  Methods and Results , 1986 .

[2]  Meidad Kissinger,et al.  Importing terrestrial biocapacity: The U.S. case and global implications , 2010 .

[3]  John Hille,et al.  The Concept of Environmental Space: Implications for Policies, Environmental Reporting and Assessments , 1998 .

[4]  P. Baker Biofuels: Environmental Consequences and Interactions with Changing Land Use. Comments on the SCOPE report. , 2010 .

[5]  Wolfgang Lucht,et al.  Embodied HANPP: Mapping the spatial disconnect between global biomass production and consumption , 2009 .

[6]  C. Field,et al.  Global scale climate–crop yield relationships and the impacts of recent warming , 2007, Environmental Research Letters.

[7]  Jacinto F. Fabiosa,et al.  Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change , 2008, Science.

[8]  John Hille The Concept of Environmental Space , 1998 .

[9]  D. Vuuren,et al.  Growing within limits. A report to the Global Assembly 2009 of the Club of Rome , 2009 .

[10]  Karl-Heinz Erb,et al.  Actual land demand of Austria 1926–2000: a variation on Ecological Footprint assessments , 2004 .

[11]  Marelli Luisa,et al.  Biofuels: a New Methodology to Estimate GHG Emissions Due to Global Land Use Change - A methodology involving spatial allocation of agricultural land demand, calculation of carbon stocks and estimation of N2O emissions , 2010 .

[12]  E. Robert,et al.  Indirect Land Use Change From Increased Biofuels Demand - Comparison of Models and Results for Marginal Biofuels Production from Different Feedstocks , 2010 .

[13]  D. Tilman,et al.  Carbon-Negative Biofuels from Low-Input High-Diversity Grassland Biomass , 2006, Science.

[14]  P. Kauppi,et al.  Disparate Geography of Consumption, Production, and Environmental Impacts , 2010 .

[15]  Betina Dimaranan,et al.  Global trade and environmental impact study of the EU biofuels mandate. , 2010 .

[16]  H. Witzke,et al.  EU agricultural production and trade: can more efficiency prevent increasing 'land-grabbing' outside of Europe? , 2009 .

[17]  F. Bonnaire Methoden und Ergebnisse , 2000 .

[18]  Roy Haines-Young,et al.  Land use and biodiversity relationships , 2009 .

[19]  F. Chapin,et al.  A safe operating space for humanity , 2009, Nature.

[20]  Michael R. Wagner,et al.  Forest Plantations and Biodiversity: A Fresh Perspective , 2007, Journal of Forestry.

[21]  H. Haberl,et al.  Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems , 2007, Proceedings of the National Academy of Sciences.

[22]  Europäische Kommission,et al.  EU energy and transport in figures , 2010 .

[23]  K. Seto,et al.  Stocks, Flows, and Prospects of Land , 2009 .

[24]  J. Neufeld,et al.  The State of Food and Agriculture , 1970 .

[25]  M. Fischedick,et al.  Nachhaltige Flächennutzung und nachwachsende Rohstoffe : Optionen einer nachhaltigen Flächennutzung und Ressourcenschutzstrategien unter besonderer Berücksichtigung der nachhaltigen Versorgung mit nachwachsenden Rohstoffen , 2009 .

[26]  D. Hallam 2 Foreign Investment in Developing Country Agriculture – Issues , Policy Implications and International Response , 2009 .

[27]  M. Fischedick,et al.  Nutzungskonkurrenzen bei Biomasse: Auswirkungen der verstärkten Nutzung von Biomasse im Energiebereich auf die stoffliche Nutzung in der Biomasse verarbeitenden Industrie und deren Wettbewerbsfähigkeit durch staatlich induzierte Förderprogramme. Endbericht , 2008 .

[28]  Stefan Bringezu,et al.  Key Elements for Economy-wide Sustainable Resource Management , 2011 .

[29]  S. Polasky,et al.  Land Clearing and the Biofuel Carbon Debt , 2008, Science.

[30]  Lian Pin Koh,et al.  Cashing in palm oil for conservation , 2007, Nature.

[31]  Stefan Bringezu,et al.  Global implications of biomass and biofuel use in Germany : recent trends and future scenarios for domestic and foreign agricultural land use and resulting GHG emissions , 2009 .

[32]  E. Lambin,et al.  The emergence of land change science for global environmental change and sustainability , 2007, Proceedings of the National Academy of Sciences.

[33]  Anette Diers,et al.  Produkt-Ökobilanz vakuumverpackter Röstkaffee , 1999 .

[34]  Lorenzo Cotula,et al.  Land grab or development opportunity? Agricultural investment and international land deals in Africa. , 2009 .

[35]  Heather M. Leslie,et al.  Chapter 7: Biodiversity Consequences of Increased Biofuel Production , 2009 .

[36]  Environmental Space as a Basis for Legitimating Global Governance of Environmental Limits , 2009, Global Environmental Politics.

[37]  Martin Junginger,et al.  Developments in international bioenergy trade , 2008 .

[38]  Stefan Bringezu,et al.  Towards Sustainable Production and Use of Resources: Assessing Biofuels , 2009 .

[39]  K. Thomson The State of Food and Agriculture 2008: Biofuels: Prospects, Risks and Opportunities . Food and Agriculture Organisation of the United Nations. xi+128 pp. Rome: FAO (2008). $65.00. ISBN 078-92-5-105980-7, ISSN 0081-4539. Available at: http://www.fao.org/docrep/011/i0100e/i0100e00.htm. , 2009, The Journal of Agricultural Science.

[40]  A. Bouwman,et al.  Mapping contemporary global cropland and grassland distributions on a 5 × 5 minute resolution , 2007 .

[41]  Rainer Zah,et al.  Future perspectives of 2nd generation biofuels , 2010 .

[42]  F. Achard,et al.  A Synthesis of Information on Rapid Land-cover Change for the Period 1981–2000 , 2005 .

[43]  Gene Bazan Our Ecological Footprint: Reducing Human Impact on the Earth , 1997 .

[44]  A. Bondeau,et al.  Indirect land-use changes can overcome carbon savings from biofuels in Brazil , 2010, Proceedings of the National Academy of Sciences.

[45]  Millenium Ecosystem Assessment Ecosystems and human well-being: synthesis , 2005 .

[46]  Robert W. Howarth,et al.  Chapter 9: Impact of Ethanol Production on Nutrient Cycles and Water Quality: The United States and Brazil as Case Studies , 2009 .