Two-photon oxygen sensing with quantum dot-porphyrin conjugates.

Supramolecular assemblies of a quantum dot (QD) associated to palladium(II) porphyrins have been developed to detect oxygen (pO2) in organic solvents. Palladium porphyrins are sensitive in the 0-160 Torr range, making them ideal phosphors for in vivo biological oxygen quantification. Porphyrins with meso pyridyl substituents bind to the surface of the QD to produce self-assembled nanosensors. Appreciable overlap between QD emission and porphyrin absorption features results in efficient Förster resonance energy transfer (FRET) for signal transduction in these sensors. The QD serves as a photon antenna, enhancing porphyrin emission under both one- and two-photon excitation, demonstrating that QD-palladium porphyrin conjugates may be used for oxygen sensing over physiological oxygen ranges.

[1]  Jian Xu,et al.  FRET excited ratiometric oxygen sensing in living tissue , 2013, Journal of Neuroscience Methods.

[2]  Euan R. Kay,et al.  Conformational control of energy transfer: a mechanism for biocompatible nanocrystal-based sensors. , 2013, Angewandte Chemie.

[3]  R. Jain,et al.  A Nanocrystal-based Ratiometric pH Sensor for Natural pH Ranges. , 2012, Chemical Science.

[4]  Yuji Yamaguchi,et al.  Ratiometric molecular sensor for monitoring oxygen levels in living cells. , 2012, Angewandte Chemie.

[5]  H. Steinrück,et al.  Coordination and metalation bifunctionality of Cu with 5,10,15,20-tetra(4-pyridyl)porphyrin: toward a mixed-valence two-dimensional coordination network. , 2012, Journal of the American Chemical Society.

[6]  Daniel G Nocera,et al.  Photo-ribonucleotide reductase β2 by selective cysteine labeling with a radical phototrigger , 2011, Proceedings of the National Academy of Sciences.

[7]  D. Nocera,et al.  Deciphering radical transport in the large subunit of class I ribonucleotide reductase. , 2011, Journal of the American Chemical Society.

[8]  T. Blaudeck,et al.  Quantitative Analysis of Singlet Oxygen (1O2) Generation via Energy Transfer in Nanocomposites Based on Semiconductor Quantum Dots and Porphyrin Ligands , 2011 .

[9]  T. Trindade,et al.  Nanocomposite Particles for Bio-Applications : Materials and Bio-Interfaces , 2011 .

[10]  M. Ravikanth,et al.  Re(I) bridged porphyrin dyads, triads and tetrads , 2011 .

[11]  Triantafyllos Stylianopoulos,et al.  Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies. , 2011, Annual review of chemical and biomolecular engineering.

[12]  Bradley B. Collier,et al.  Microparticle ratiometric oxygen sensors utilizing near-infrared emitting quantum dots. , 2011, The Analyst.

[13]  D. Huffaker,et al.  Front Matter: Volume 7947 , 2011 .

[14]  M. Amelia,et al.  A ratiometric luminescent oxygen sensor based on a chemically functionalized quantum dot. , 2011, Chemical communications.

[15]  Martin Link,et al.  Photographing oxygen distribution. , 2010, Angewandte Chemie.

[16]  M. Nogami,et al.  Optical oxygen sensors based on platinum porphyrin dyes encapsulated in ORMOSILS , 2010 .

[17]  Emmanuel Roussakis,et al.  Two-photon microscopy of oxygen: polymersomes as probe carrier vehicles. , 2010, The journal of physical chemistry. B.

[18]  John E. Bercaw,et al.  NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist , 2010 .

[19]  Hiroki Nagai,et al.  Oxygen‐sensing properties of 5,10,15,20‐tetraphenylporphinato platinum(II) and palladium(II) covalently bound on poly(isobutyl‐co‐2,2,2‐trifluoroethyl methacrylate) , 2010 .

[20]  David Lloyd,et al.  Probing intracellular oxygen by quenched phosphorescence lifetimes of nanoparticles containing polyacrylamide-embedded [Ru(dpp(SO_3Na)_2)_3]Cl_2 , 2010, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[21]  Atsushi Kobayashi,et al.  Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector. , 2009, Physical chemistry chemical physics : PCCP.

[22]  M. Bawendi,et al.  Two-photon absorbing nanocrystal sensors for ratiometric detection of oxygen. , 2009, Journal of the American Chemical Society.

[23]  Ute Resch-Genger,et al.  Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties , 2009 .

[24]  A. Lembo,et al.  A glycyl-substituted porphyrin as a starting compound for the synthesis of a pi-pi-stacked porphyrin-fullerene dyad with a frozen geometry. , 2009, Organic & biomolecular chemistry.

[25]  G. Scholes,et al.  Quantitative modeling of the role of surface traps in CdSe/CdS/ZnS nanocrystal photoluminescence decay dynamics , 2009, Proceedings of the National Academy of Sciences.

[26]  Jianghong Rao,et al.  Biosensing and imaging based on bioluminescence resonance energy transfer. , 2009, Current opinion in biotechnology.

[27]  Xiao-ru Wang,et al.  Reversible Optical Sensor Strip for Oxygen , 2008 .

[28]  Feng Gao,et al.  Oxygen microscopy by two-photon-excited phosphorescence. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[29]  J. Lindsey,et al.  Investigation of the scope of a new route to ABCD-bilanes and ABCD-porphyrins. , 2008, The Journal of organic chemistry.

[30]  J. Lindsey,et al.  Rational or statistical routes from 1-acyldipyrromethanes to meso-substituted porphyrins. Distinct patterns, multiple pyridyl substituents, and amphipathic architectures. , 2008, The Journal of organic chemistry.

[31]  Miho Suzuki,et al.  Quantum dot FRET biosensors that respond to pH, to proteolytic or nucleolytic cleavage, to DNA synthesis, or to a multiplexing combination. , 2008, Journal of the American Chemical Society.

[32]  Jason R. Schmink,et al.  Microwave-promoted insertion of Group 10 metals into free base porphyrins and chlorins: scope and limitations. , 2008, Dalton transactions.

[33]  I. Goldberg,et al.  Supramolecular hydrogen bonding of [5,10,15,20-tetrakis(4-carboxyphenyl)porphyrinato]palladium(II) in the presence of competing solvents. , 2008, Acta crystallographica. Section C, Crystal structure communications.

[34]  X. Weng,et al.  Synthesis and DNA‐Recognition and ‐Cleavage Properties of Multiply Charged Porphyrin Esters , 2008, Chemistry & biodiversity.

[35]  C. Borczyskowski,et al.  Photoinduced relaxation processes in complexes based on semiconductor CdSe nanocrystals and organic molecules , 2007 .

[36]  J. Lindsey,et al.  New route to ABCD-porphyrins via bilanes. , 2007, The Journal of organic chemistry.

[37]  Alessandro Senes,et al.  Energy and electron transfer in enhanced two-photon-absorbing systems with triplet cores. , 2007, The journal of physical chemistry. A.

[38]  I. Bratsos,et al.  Metalloporphyrins as chemical shift reagents: the unambiguous NMR characterization of the cis- and trans-isomers of meso-(bis)-4′-pyridyl-(bis)-4′-carboxymethylphenylporphyrins , 2007 .

[39]  J. Folkman Opinion: Angiogenesis: an organizing principle for drug discovery? , 2007, Nature Reviews Drug Discovery.

[40]  M. Bawendi,et al.  CdSe nanocrystal based chem-/bio- sensors. , 2007, Chemical Society reviews.

[41]  Chih-Wei Lai,et al.  The empirical correlation between size and two-photon absorption cross section of CdSe and CdTe quantum dots. , 2006, Small.

[42]  Moungi G Bawendi,et al.  A ratiometric CdSe/ZnS nanocrystal pH sensor. , 2006, Journal of the American Chemical Society.

[43]  Emmanuel Deiters,et al.  Porphyrin based metallamacrocycles , 2006 .

[44]  Faramarz Farahi,et al.  Applications of quantum dots in optical fiber luminescent oxygen sensors. , 2006, Applied optics.

[45]  J. Lindsey,et al.  Nearly Chromatography-Free Synthesis of the A3B-Porphyrin 5-(4-Hydroxymethylphenyl)-10,15,20-tri-p-tolylporphinatozinc(II) , 2006 .

[46]  P. Mulvaney,et al.  The effects of chemisorption on the luminescence of CdSe quantum dots. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[47]  P. Harvey,et al.  Synthesis and photophysical properties of meso-substituted bisporphyrins: comparative study of phosphorescence quenching for dioxygen sensing. , 2005, Inorganic chemistry.

[48]  Ping Zhang,et al.  Oxygen sensing materials based on mesoporous silica MCM-41 and Pt(II)–porphyrin complexes , 2005 .

[49]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[50]  Sergei A Vinogradov,et al.  Phosphorescent oxygen sensor with dendritic protection and two-photon absorbing antenna. , 2005, Journal of the American Chemical Society.

[51]  T. Blaudeck,et al.  Nanoassemblies designed from semiconductor quantum dots and molecular arrays. , 2005, The journal of physical chemistry. B.

[52]  J. Lindsey,et al.  Direct synthesis of palladium porphyrins from acyldipyrromethanes. , 2005, The Journal of organic chemistry.

[53]  R. Jain Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy , 2005, Science.

[54]  S. Tamaru,et al.  9-Acylation of 1-acyldipyrromethanes containing a dialkylboron mask for the α-acylpyrrole motif , 2004 .

[55]  W. Webb,et al.  Nonlinear magic: multiphoton microscopy in the biosciences , 2003, Nature Biotechnology.

[56]  J. Lindsey,et al.  A Scalable Synthesis of Meso-Substituted Dipyrromethanes , 2003 .

[57]  Igor L. Medintz,et al.  Self-assembled nanoscale biosensors based on quantum dot FRET donors , 2003, Nature materials.

[58]  M. Drobizhev,et al.  Two-photon absorption of tetraphenylporphin free base , 2003 .

[59]  Geoffrey F. Strouse,et al.  Nanosecond exciton recombination dynamics in colloidal CdSe quantum dots under ambient conditions , 2003 .

[60]  W. Webb,et al.  Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo , 2003, Science.

[61]  Sergei A Vinogradov,et al.  Oxyphor R2 and G2: phosphors for measuring oxygen by oxygen-dependent quenching of phosphorescence. , 2002, Analytical biochemistry.

[62]  D. Nocera,et al.  Excited-state dynamics of cofacial pacman porphyrins , 2002 .

[63]  Moungi G. Bawendi,et al.  On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots , 2002 .

[64]  G. Flynn,et al.  Controlled hierarchical self-assembly and deposition of nanoscale photonic materials. , 2002, Angewandte Chemie.

[65]  H. Schneider,et al.  Porphyrin-based peptide receptors: syntheses and NMR analysis. , 2002, Chemistry.

[66]  R. B. Campbell,et al.  In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy , 2001, Nature Medicine.

[67]  Andreas Kornowski,et al.  Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphospine Mixture. , 2001, Nano letters.

[68]  Y. Ishikawa,et al.  Efficient photocleavage of DNA by cationic porphyrin-acridine hybrids with the effective length of diamino alkyl linkage. , 2001, Chemical & pharmaceutical bulletin.

[69]  J. Lindsey,et al.  Rational synthesis of meso-substituted porphyrins bearing one nitrogen heterocyclic group. , 2000, The Journal of organic chemistry.

[70]  Klimov,et al.  Quantization of multiparticle auger rates in semiconductor quantum dots , 2000, Science.

[71]  Rakesh K. Jain,et al.  Interstitial pH and pO2 gradients in solid tumors in vivo: High-resolution measurements reveal a lack of correlation , 1997, Nature Medicine.

[72]  Young S. Choi,et al.  One‐ and two‐photon fluorescence excitation spectra of the 2 1Ag states of linear tetraenes in free jet expansions , 1995 .

[73]  Philippe Guyot-Sionnest,et al.  Photoluminescence of single semiconductor nanocrystallites by two-photon excitation microscopy , 1994 .

[74]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[75]  P. Okunieff,et al.  Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. , 1989, Cancer research.

[76]  R. Wagner,et al.  Investigation of the synthesis of ortho-substituted tetraphenylporphyrins , 1989 .

[77]  J. Schwartz,et al.  Organometallics , 1987, Science.

[78]  K. Bonin,et al.  Two-photon electric-dipole selection rules , 1984 .

[79]  F. R. Longo,et al.  Luminescence studies on several tetraarylporphins and their zinc derivatives , 1975 .

[80]  J. Callis,et al.  Porphyrins XXII: Fast fluorescence, delayed fluorescence, and quasiline structure in palladium and platinum complexes☆ , 1971 .

[81]  Delyle Eastwood,et al.  Porphyrins: XVIII. Luminescence of (Co), (Ni), Pd, Pt complexes☆ , 1970 .

[82]  A. Adler,et al.  Mechanistic Investigations of Porphyrin Syntheses. I. Preliminary Studies on ms-Tetraphenylporphin , 1964 .

[83]  C. K. Miller,et al.  Crystal and Molecular Structures of Some Metal Tetraphenylporphines , 1964 .

[84]  C. Tomes CHEMISTRY AND PHYSICS , 1903 .

[85]  P. So,et al.  Handbook of Biomedical Nonlinear Optical Microscopy , 2009 .

[86]  Chris P. Tsokos,et al.  Mathematical Statistics with Applications , 2009 .

[87]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[88]  P. Alivisatos The use of nanocrystals in biological detection , 2004, Nature Biotechnology.

[89]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[90]  N. Turro,et al.  Surface Modification of CdSe Nanocrystals with Organic Ligands , 2002 .

[91]  Y. Amao,et al.  Novel optical oxygen sensing device: a thin film of a palladium porphyrin with a long alkyl chain on an alumina plate , 2000 .

[92]  E. Sevick-Muraca,et al.  Quantitative optical spectroscopy for tissue diagnosis. , 1996, Annual review of physical chemistry.

[93]  J. Mccleverty Photochemistry of polypyridine and porphyrin complexes , 1993 .

[94]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[95]  I. Z. Steinberg Long-range nonradiative transfer of electronic excitation energy in proteins and polypeptides. , 1971, Annual review of biochemistry.

[96]  A. Adler,et al.  A simplified synthesis for meso-tetraphenylporphine , 1967 .

[97]  Parag A. Pathak,et al.  Massachusetts Institute of Technology , 1964, Nature.

[98]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .