The Role of Chlorine Dioxide in the Electroreduction of Chlorates at Low pH

[1]  Xiulin Fan,et al.  High-energy and low-cost membrane-free chlorine flow battery , 2022, Nature Communications.

[2]  Yongchai Kwon,et al.  Aqueous redox flow battery using iron 2,2‐bis(hydroxymethyl)‐2,2′,2′‐nitrilotriethanol complex and ferrocyanide as newly developed redox couple , 2022, International Journal of Energy Research.

[3]  K. Stevenson,et al.  All-organic non-aqueous redox flow batteries with advanced composite polymer-ceramic Li-conductive membrane , 2022, Journal of Energy Storage.

[4]  Yuyue Zhao,et al.  Multielectron Organic Redoxmers for Energy-Dense Redox Flow Batteries , 2022, ACS Materials Letters.

[5]  M. A. Vorotyntsev,et al.  Halate electroreduction from acidic solution at rotating disc electrode. Theoretical study of the steady-state convective-migration-diffusion transport for comparable concentrations of halate ions and protons , 2022, Electrochimica Acta.

[6]  Minghui Yang,et al.  A neutral polysulfide/ferricyanide redox flow battery , 2021, iScience.

[7]  M. A. Vorotyntsev,et al.  Halate electroreduction via autocatalytic mechanism for rotating disk electrode configuration: Evolution of concentrations and current after large-amplitude potential step , 2021 .

[8]  V. Andreev,et al.  Novel Aqueous Zinc–Halogenate Flow Batteries as an Offspring of Zinc–Air Fuel Cells for Use in Oxygen‐Deficient Environment , 2021, Energy Technology.

[9]  M. Perry,et al.  Polysulfide-Permanganate Flow Battery Using Abundant Active Materials , 2021, Journal of The Electrochemical Society.

[10]  I. Cheng,et al.  Electrochemical determination of free chlorine on pseudo-graphite electrode. , 2019, Talanta.

[11]  M. A. Vorotyntsev,et al.  Hydrogen-bromate flow battery: can one reach both high bromate utilization and specific power? , 2019, Journal of Solid State Electrochemistry.

[12]  M. A. Vorotyntsev,et al.  Bromate electroreduction in acidic solution inside rectangular channel under flow-through porous electrode conditions , 2019, Electrochimica Acta.

[13]  Chun‐mei Liu Potassium Permanganate as an Oxidant for a Microfluidic Direct Formate Fuel Cell , 2019, International Journal of Electrochemical Science.

[14]  T. L. Liu,et al.  Unprecedented Capacity and Stability of Ammonium Ferrocyanide Catholyte in pH Neutral Aqueous Redox Flow Batteries , 2019, Joule.

[15]  M. A. Vorotyntsev,et al.  A Hydrogen–Bromate Flow Battery for Air‐Deficient Environments , 2018 .

[16]  Chulhwan Park,et al.  Hexavalent chromium as a cathodic electron acceptor in a bipolar membrane microbial fuel cell with the simultaneous treatment of electroplating wastewater , 2017 .

[17]  M. A. Vorotyntsev,et al.  Bromate anion reduction: novel autocatalytic (EC″) mechanism of electrochemical processes. Its implication for redox flow batteries of high energy and power densities , 2017 .

[18]  Y. Ikeda,et al.  Studies on Metal Complexes as Active Materials in Redox-flow Battery Using Ionic Liquids as Electrolyte : Cyclic Voltammetry of Betainium Bis(Trifluoromethylsulfonyl)Imide Solution Dissolving Na[FeIII(edta)(H₂O)] as an Anode Active Material , 2015 .

[19]  Y. Tolmachev,et al.  Electroreduction of halogen oxoanions via autocatalytic redox mediation by halide anions: novel EC” mechanism. Theory for stationary 1D regime , 2015 .

[20]  Y. Tolmachev,et al.  Energy cycle based on a high specific energy aqueous flow battery and its potential use for fully electric vehicles and for direct solar-to-chemical energy conversion , 2015, Journal of Solid State Electrochemistry.

[21]  O. Petrii,et al.  Electroreduction of peroxodisulfate anion at platinum rotating disc electrode in the cyclic voltammetry mode , 2013, Russian Journal of Electrochemistry.

[22]  Haolin Sun,et al.  Preparation of Chlorine Dioxide by Electrocatalytic Reduction of Sodium Chlorate , 2013 .

[23]  P. Modiba,et al.  Kinetics study of transition metal complexes (Ce–DTPA, Cr–DTPA and V–DTPA) for redox flow battery applications , 2013 .

[24]  A. P. Oliveira,et al.  Kinetics and mechanism of chlorate-chloride reaction , 2012 .

[25]  K. Nealson,et al.  Evaluation of microbial fuel cell Shewanella biocathodes for treatment of chromate contamination , 2012 .

[26]  Kalle Pelin,et al.  Chlorine Oxides and Chlorine Oxygen Acids , 2010 .

[27]  D. Zavala-Araiza,et al.  Electrochemical Paired Convergent Production of ClO2 from NaClO2 and NaClO3 , 2009 .

[28]  D. Zavala-Araiza,et al.  Cathodic Production of ClO2 from NaClO3 , 2009 .

[29]  C. Xiang,et al.  Pilot Study of an Aqueous Zinc-Bichromate Battery , 2009 .

[30]  C. Banks,et al.  Gas sensing using edge-plane pyrolytic-graphite electrodes: electrochemical reduction of chlorine , 2005, Analytical and bioanalytical chemistry.

[31]  O. Petrii,et al.  Effect of cadmium and lead adatoms on the reduction kinetics of peroxodisulfate anions at platinized platinum in acid solutions , 2005 .

[32]  M. Borzenko,et al.  Effect of Ammonium Ions on the Electroreduction of Anions at a Mercury Electrode , 2004 .

[33]  G. Tsirlina,et al.  Intensification of the Nitrate Anion Reduction on a Membrane Palladium Electrode , 2002 .

[34]  J. Pihl,et al.  Slow Heterogeneous Charge Transfer Kinetics for the ClO2-/ClO2 Redox Couple at Platinum, Gold, and Carbon Electrodes. Evidence for Nonadiabatic Electron Transfer , 1999 .

[35]  D. Stanbury,et al.  VANISHINGLY SLOW KINETICS OF THE CLO2/CL- REACTION : ITS QUESTIONABLE SIGNIFICANCE IN NONLINEAR CHLORITE REACTIONS , 1999 .

[36]  O. Petrii,et al.  Effect of inorganic cations on the electroreduction of nitrate anions on Pt|Pt electrodes in sulfuric acid solutions , 1998 .

[37]  G. Raspi,et al.  Potentiostatic study of heterogeneous chemical reactions. ClO2--ClO2-Cl- system on platinized platinum , 1970 .

[38]  G. Raspi,et al.  Voltammetric behaviour of chlorites and chlorine dioxide on a platinized-platinum microelectrode with periodical renewal of the diffusion layer and its analytical applications , 1969 .

[39]  F. Lenzi,et al.  Effets ioniques spécifiques sur le taux de formation du ClO2 par la réaction chlorure–chlorate , 1968 .

[40]  H. Taube,et al.  Applications of Radioactive Chlorine to the Study of the Mechanisms of Reactions Involving Changes in the Oxidation State of Chlorine , 1949 .

[41]  A. Skrabal,et al.  Die Reduktionsgeschwindigkeit der Chlorsäure und Bromsäure , 1934 .

[42]  M. A. Vorotyntsev,et al.  Bromate electroreduction from sulfuric acid solution at rotating disk electrode: Experimental study , 2018 .

[43]  M. A. Vorotyntsev,et al.  Surprising dependence of the current density of bromate electroreduction on the microelectrode radius as manifestation of the autocatalytic redox-cycle (EC″) reaction mechanism , 2018 .

[44]  O. Petrii,et al.  Activationless Reduction of the Hexacyanoferrate Anion on a Mercury Electrode , 2003 .

[45]  S. Licht A novel aqueous aluminum|permanganate fuel cell , 1999 .

[46]  G. Schmitz Kinetics and mechanism of the iodate iodide reaction and other related reactions , 1999 .

[47]  O. Petrii,et al.  Effect of tin ions on the electroreduction of nitrate anions on platinized platinum electrodes , 1998 .

[48]  O. Petrii,et al.  Electroreduction of nitrate and nitrite anions on platinum metals: A model process for elucidating the nature of the passivation by hydrogen adsorption , 1992 .

[49]  H. Hiller In: Ullmann''''s Encyclopedia of Industrial Chemistry , 1989 .