Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options.

The incidence of fungal infections has increased significantly, so contributing to morbidity and mortality. This is caused by an increase in antimicrobial resistance and the restricted number of antifungal drugs, which retain many side effects. Candida species are major human fungal pathogens that cause both mucosal and deep tissue infections. Recent evidence suggests that the majority of infections produced by this pathogen are associated with biofilm growth. Biofilms are biological communities with a high degree of organization, in which micro-organisms form structured, coordinated and functional communities. These biological communities are embedded in a self-created extracellular matrix. Biofilm production is also associated with a high level of antimicrobial resistance of the associated organisms. The ability of Candida species to form drug-resistant biofilms is an important factor in their contribution to human disease. The study of plants as an alternative to other forms of drug discovery has attracted great attention because, according to the World Health Organization, these would be the best sources for obtaining a wide variety of drugs and could benefit a large population. Furthermore, silver nanoparticles, antibodies and photodynamic inactivation have also been used with good results. This article presents a brief review of the literature regarding the epidemiology of Candida species, as well as their pathogenicity and ability to form biofilms, the antifungal activity of natural products and other therapeutic options.

[1]  A. Gácser,et al.  Expression analysis of the Candida albicans lipase gene family during experimental infections and in patient samples. , 2004, FEMS yeast research.

[2]  Nicholas J. Jacobs,et al.  Antifungal mechanisms by which a novel Pseudomonas aeruginosa phenazine toxin kills Candida albicans in biofilms , 2010, Molecular microbiology.

[3]  M. R̆ic̆icová,et al.  Candida albicans biofilm formation in a new in vivo rat model. , 2010, Microbiology.

[4]  T. Souto-Padrón,et al.  Antimicrobial activity of Croton cajucara Benth linalool-rich essential oil on artificial biofilms and planktonic microorganisms. , 2005, Oral microbiology and immunology.

[5]  A. Colombo,et al.  Fungemia in cancer patients in Brazil: Predominance of non-albicans species , 2004, Mycopathologia.

[6]  A. Colombo,et al.  Prospective Observational Study of Candidemia in São Paulo, Brazil: Incidence Rate, Epidemiology, and Predictors of Mortality , 2007, Infection Control & Hospital Epidemiology.

[7]  Paul J Cullen,et al.  The Regulation of Filamentous Growth in Yeast , 2012, Genetics.

[8]  L. J. Douglas,et al.  Biofilm formation by Candida species on the surface of catheter materials in vitro , 1994, Infection and immunity.

[9]  L. Samaranayake,et al.  Biofilm lifestyle of Candida: a mini review. , 2008, Oral diseases.

[10]  Michael R Hamblin,et al.  Characterization of plant-derived saponin natural products against Candida albicans. , 2010, ACS chemical biology.

[11]  A. Tedesco,et al.  Photodynamic Inactivation of Planktonic Cultures and Biofilms of Candida albicans Mediated by Aluminum‐Chloride‐Phthalocyanine Entrapped in Nanoemulsions , 2013, Photochemistry and photobiology.

[12]  R. Wenzel,et al.  Inflammatory response and clinical course of adult patients with nosocomial bloodstream infections caused by Candida spp. , 2006, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[13]  K. Verstrepen,et al.  Flocculation, adhesion and biofilm formation in yeasts , 2006, Molecular microbiology.

[14]  F. Gaboriaud,et al.  Morphological specificity of yeast and filamentous Candida albicans forms on surface properties. , 2005, Comptes rendus biologies.

[15]  C. Nakamura,et al.  Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. , 2002, Memorias do Instituto Oswaldo Cruz.

[16]  R. Darouiche,et al.  Candida Infections of Medical Devices , 2004, Clinical Microbiology Reviews.

[17]  J. Sobel,et al.  Candiduria: a randomized, double-blind study of treatment with fluconazole and placebo. The National Institute of Allergy and Infectious Diseases (NIAID) Mycoses Study Group. , 2000, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[18]  S. Thaweboon,et al.  In vitro antimicrobial activity of Ocimum americanum L. essential oil against oral microorganisms. , 2009, The Southeast Asian journal of tropical medicine and public health.

[19]  P. Hsueh,et al.  Time to positivity of blood cultures of different Candida species causing fungaemia. , 2012, Journal of medical microbiology.

[20]  R. Rautemaa,et al.  Oral candidosis – Clinical challenges of a biofilm disease , 2011, Critical reviews in microbiology.

[21]  L. J. Douglas,et al.  Candida biofilms and their role in infection. , 2003, Trends in microbiology.

[22]  D. Rimland,et al.  Molecular epidemiology of Candida albicans strains isolated from the oropharynx of HIV-positive patients at successive clinic visits. , 2001, Medical mycology.

[23]  A. O. Jorge,et al.  In vitro minocycline activity on superinfecting microorganisms isolated from chronic periodontitis patients. , 2006, Brazilian oral research.

[24]  R. Rosli,et al.  Candida and invasive candidiasis: back to basics , 2011, European Journal of Clinical Microbiology & Infectious Diseases.

[25]  G. Moran,et al.  Candida albicans versus Candida dubliniensis: Why Is C. albicans More Pathogenic? , 2011, International journal of microbiology.

[26]  K. Lewis Multidrug tolerance of biofilms and persister cells. , 2008, Current topics in microbiology and immunology.

[27]  E. Ioannidou,et al.  Oral Candida infection and colonization in solid organ transplant recipients. , 2009, Oral microbiology and immunology.

[28]  K. Lewis,et al.  Candida albicans Biofilms Produce Antifungal-Tolerant Persister Cells , 2006, Antimicrobial Agents and Chemotherapy.

[29]  K. Ingolfsdottir Usnic acid. , 2002, Phytochemistry.

[30]  N. Elguezabal,et al.  Inhibition of adherence of Candida albicans and Candida dubliniensis to a resin composite restorative dental material by salivary secretory IgA and monoclonal antibodies. , 2004, Oral diseases.

[31]  T. Tsai,et al.  Chitosan Nanoparticles for Antimicrobial Photodynamic Inactivation: Characterization and In Vitro Investigation † , 2012, Photochemistry and photobiology.

[32]  W. Chaffin,et al.  Cell Wall and Secreted Proteins ofCandida albicans: Identification, Function, and Expression , 1998, Microbiology and Molecular Biology Reviews.

[33]  P. Mukherjee,et al.  Candida biofilm resistance. , 2004, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[34]  David W Williams,et al.  Biofilms of non-Candida albicans Candida species: quantification, structure and matrix composition. , 2009, Medical mycology.

[35]  D. Pittet,et al.  Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. , 2003, The Lancet. Infectious diseases.

[36]  J. Enders,et al.  Infectious Diseases Society of America. , 1969, Antimicrobial agents and chemotherapy.

[37]  E. Weinberg,et al.  Candida albicans dimorphism and virulence: Role of copper , 1978, Mycopathologia.

[38]  M. Shirtliff,et al.  Effect of farnesol on Candida dubliniensis biofilm formation and fluconazole resistance. , 2006, FEMS yeast research.

[39]  Tung-Sheng Shih,et al.  The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. , 2008, Toxicology letters.

[40]  M. Ghannoum Potential role of phospholipases in virulence and fungal pathogenesis. , 2000, Clinical microbiology reviews.

[41]  L. C. Baeza,et al.  Genetic relatedness of commensal strains of Candida albicans carried in the oral cavity of patients’ dental prosthesis users in Brazil , 2007, Mycopathologia.

[42]  David R Soll,et al.  Candida Biofilms: Is Adhesion Sexy? , 2008, Current Biology.

[43]  L. J. Douglas,et al.  Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. , 2006, Journal of medical microbiology.

[44]  D. Mosser,et al.  Production of a hemolytic factor by Candida albicans , 1994, Infection and immunity.

[45]  M. Montejo [Epidemiology of invasive fungal infection in solid organ transplant]. , 2011, Revista iberoamericana de micologia.

[46]  R. Calderone,et al.  Virulence factors of Candida albicans. , 2001, Trends in microbiology.

[47]  J. Sobel,et al.  Practice guidelines for the treatment of candidiasis. Infectious Diseases Society of America. , 2000, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[48]  R. H. Pires,et al.  Candida parapsilosis complex water isolates from a haemodialysis unit: biofilm production and in vitro evaluation of the use of clinical antifungals. , 2011, Memorias do Instituto Oswaldo Cruz.

[49]  F. Queiroz-Telles,et al.  Epidemiology of opportunistic fungal infections in Latin America. , 2010, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[50]  O. Ural,et al.  Risk factors for nosocomial candiduria. , 2006, Saudi Medical Journal.

[51]  Alexander D. Johnson,et al.  A Recently Evolved Transcriptional Network Controls Biofilm Development in Candida albicans , 2012, Cell.

[52]  M. Ghannoum,et al.  Candida biofilms: antifungal resistance and emerging therapeutic options. , 2004, Current opinion in investigational drugs.

[53]  J. Pemán,et al.  Prospective Multicenter Study of the Epidemiology, Molecular Identification, and Antifungal Susceptibility of Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis Isolated from Patients with Candidemia , 2011, Antimicrobial Agents and Chemotherapy.

[54]  Joel M. White,et al.  Nd:YAG and CO2 laser therapy of oral mucosal lesions. , 1998, Journal of clinical laser medicine & surgery.

[55]  M. Nunn,et al.  Environmental Source of Candida dubliniensis , 2007, Emerging infectious diseases.

[56]  Marie-Adèle Rajandream,et al.  Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans. , 2009, Genome research.

[57]  Benjamin J Park,et al.  Epidemiology of Candidemia in Brazil: a Nationwide Sentinel Surveillance of Candidemia in Eleven Medical Centers , 2006, Journal of Clinical Microbiology.

[58]  H. Sanchez,et al.  Interface of Candida albicans Biofilm Matrix-Associated Drug Resistance and Cell Wall Integrity Regulation , 2011, Eukaryotic Cell.

[59]  T. C. White,et al.  Clinical, Cellular, and Molecular Factors That Contribute to Antifungal Drug Resistance , 1998, Clinical Microbiology Reviews.

[60]  U. Reichard,et al.  Secreted Aspartic Proteinase Family ofCandida tropicalis , 2001, Infection and Immunity.

[61]  Jan Michiels,et al.  Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. , 2011, Journal of medical microbiology.

[62]  A. Colombo,et al.  Epidemiologia das infecções hematogênicas por Candida spp , 2003 .

[63]  J. Lopez-Ribot,et al.  Candida Biofilms: an Update , 2005, Eukaryotic Cell.

[64]  S. Suryani,et al.  In situ TEM and SEM studies on the antimicrobial activity and prevention of Candida albicans biofilm by Cassia spectabilis extract. , 2009, Micron.

[65]  P. Fidel Candida-Host Interactions in HIV Disease: Relationships in Oropharyngeal Candidiasis , 2006, Advances in dental research.

[66]  M. Rodier,et al.  Immunoglobulins G could prevent adherence of Candida albicans to polystyrene and extracellular matrix components. , 2003, Journal of medical microbiology.

[67]  A. Parent,et al.  Fluconazole pharmacokinetics in the cerebrospinal fluid of a child with Candida tropicalis meningitis. , 1992, The Pediatric infectious disease journal.

[68]  K. Ying,et al.  cDNA Microarray Analysis of Differential Gene Expression in Candida albicans Biofilm Exposed to Farnesol , 2005, Antimicrobial Agents and Chemotherapy.

[69]  Majid Montazer,et al.  A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. , 2010, Colloids and surfaces. B, Biointerfaces.

[70]  I. Pichová,et al.  Antibody response to the 45 kDa Candida albicans antigen in an animal model and potential role of the antigen in adherence. , 2008, Journal of medical microbiology.

[71]  G. Köhler,et al.  Expression of virulence genes in Candida albicans. , 2000, Advances in experimental medicine and biology.

[72]  John R Perfect,et al.  Resistance to Antifungal Agents: Mechanisms and Clinical Impact , 2008 .

[73]  C. Supuran,et al.  Antifungal Activity of Ag(I) and Zn(Ii) Complexes of Aminobenzolamide (5-Sulfanilylamido-1,3,4-Thiadiazole-2-Sulfonamide) Derivatives , 2000, Journal of enzyme inhibition.

[74]  M. Ghannoum,et al.  Antifungal Susceptibility of Candida Biofilms: Unique Efficacy of Amphotericin B Lipid Formulations and Echinocandins , 2002, Antimicrobial Agents and Chemotherapy.

[75]  G. Baillie,et al.  Role of dimorphism in the development of Candida albicans biofilms. , 1999, Journal of medical microbiology.

[76]  A. Gácser,et al.  Targeted gene deletion in Candida parapsilosis demonstrates the role of secreted lipase in virulence. , 2007, The Journal of clinical investigation.

[77]  F. Giles,et al.  Management of intracranial fungal infections in patients with haematological malignancies , 2005, British journal of haematology.

[78]  S. Percival,et al.  Bacterial resistance to silver in wound care. , 2005, The Journal of hospital infection.

[79]  M. Buzalaf,et al.  In vitro antimicrobial activity of Caesalpinia ferrea Martius fruits against oral pathogens. , 2009, Journal of ethnopharmacology.

[80]  Nikki A. Evensen,et al.  The effects of tea polyphenols on Candida albicans: inhibition of biofilm formation and proteasome inactivation. , 2009, Canadian journal of microbiology.

[81]  A. Kalkancı,et al.  Slime production and proteinase activity of Candida species isolated from blood samples and the comparison of these activities with minimum inhibitory concentration values of antifungal agents. , 2005, Memorias do Instituto Oswaldo Cruz.

[82]  Jay Steingrub,et al.  International study of the prevalence and outcomes of infection in intensive care units , 2009 .

[83]  Dong-Xin Wang,et al.  Impact of invasive fungal infection on outcomes of severe sepsis: a multicenter matched cohort study in critically ill surgical patients , 2008, Critical care.

[84]  J. Donnelly,et al.  Correlation of the MIC and Dose/MIC Ratio of Fluconazole to the Therapeutic Response of Patients with Mucosal Candidiasis and Candidemia , 2007, Antimicrobial Agents and Chemotherapy.

[85]  W. Graninger,et al.  In vitro activity of antifungal combinations against Candida albicans biofilms. , 2010, The Journal of antimicrobial chemotherapy.

[86]  P. Lipke,et al.  Polymicrobial bloodstream infections involving Candida species: analysis of patients and review of the literature. , 2007, Diagnostic microbiology and infectious disease.

[87]  C. Kumamoto,et al.  Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene , 1999, Molecular microbiology.

[88]  T. I. E. Svidzinski,et al.  Leveduras nos tratos urinário e respiratório: infecção fúngica ou não? , 2009 .

[89]  J. F. Höfling,et al.  Action of Coriandrum sativum L. Essential Oil upon Oral Candida albicans Biofilm Formation , 2011, Evidence-based complementary and alternative medicine : eCAM.

[90]  Ana Marisa Fusco Almeida,et al.  New antimicrobial therapies used against fungi present in subgingival sites--a brief review. , 2011, Archives of oral biology.

[91]  H. Mendieta-Zerón,et al.  Perspectives for the use of silver nanoparticles in dental practice. , 2011, International dental journal.

[92]  M. Harriott,et al.  Candida albicans forms biofilms on the vaginal mucosa , 2010, Microbiology.

[93]  H. MaxAndresen,et al.  Perfil epidemiológico de la candidiasis invasora en unidades de pacientes críticos en un hospital universitario , 2011 .

[94]  G. Moran,et al.  Comparison of the epidemiology, drug resistance mechanisms, and virulence of Candida dubliniensis and Candida albicans. , 2004, FEMS yeast research.

[95]  M. Pfaller,et al.  Variation in Susceptibility of Bloodstream Isolates of Candida glabrata to Fluconazole According to Patient Age and Geographic Location in the United States in 2001 to 2007 , 2009, Journal of Clinical Microbiology.

[96]  Suhail Ahmad,et al.  Candida dubliniensis: An Appraisal of Its Clinical Significance as a Bloodstream Pathogen , 2012, PloS one.

[97]  Wannian Zhang,et al.  [Recent advances in the study of antifungal lead compounds with new chemical scaffolds]. , 2007, Yao xue xue bao = Acta pharmaceutica Sinica.

[98]  Jordi Rello,et al.  International study of the prevalence and outcomes of infection in intensive care units. , 2009, JAMA.

[99]  Mahmoud A. Ghannoum,et al.  Biofilm Formation by the Fungal PathogenCandida albicans: Development, Architecture, and Drug Resistance , 2001, Journal of bacteriology.

[100]  M. Yamazaki,et al.  Comparison of proteinase, lipase and alpha-glucosidase activities from the clinical isolates of Candida species. , 2006, Japanese journal of infectious diseases.

[101]  Asad U. Khan,et al.  International Journal of Nanomedicine , 2022 .

[102]  C. H. Camargo,et al.  Species distribution and susceptibility profile of Candida species in a Brazilian public tertiary hospital , 2010, BMC Research Notes.

[103]  S. Fridkin,et al.  Epidemiology and Predictors of Mortality in Cases of Candida Bloodstream Infection: Results from Population-Based Surveillance, Barcelona, Spain, from 2002 to 2003 , 2005, Journal of Clinical Microbiology.

[104]  M. Melhem,et al.  Five-year evaluation of bloodstream yeast infections in a tertiary hospital: the predominance of non-C. albicans Candida species. , 2010, Medical mycology.

[105]  Gordon Ramage,et al.  The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. , 2002, FEMS microbiology letters.

[106]  D. Andes,et al.  Putative Role of β-1,3 Glucans in Candida albicans Biofilm Resistance , 2006, Antimicrobial Agents and Chemotherapy.

[107]  Â. Antoniolli,et al.  Antifungal activity of Brazilian medicinal plants involved in popular treatment of mycoses. , 2007, Journal of ethnopharmacology.

[108]  M. Harriott,et al.  Importance of Candida-bacterial polymicrobial biofilms in disease. , 2011, Trends in microbiology.

[109]  A. Tedesco,et al.  Photodynamic inactivation of biofilms formed by Candida spp., Trichosporon mucoides, and Kodamaea ohmeri by cationic nanoemulsion of zinc 2,9,16,23-tetrakis(phenylthio)-29H, 31H-phthalocyanine (ZnPc) , 2012, Lasers in Medical Science.

[110]  S. Taweechaisupapong,et al.  Antimicrobial effects of Boesenbergia pandurata and Piper sarmentosum leaf extracts on planktonic cells and biofilm of oral pathogens. , 2010, Pakistan journal of pharmaceutical sciences.

[111]  K. Nam In vitro antimicrobial effect of the tissue conditioner containing silver nanoparticles , 2011, The journal of advanced prosthodontics.

[112]  R. Rajendran,et al.  Hydrolytic Enzyme Production is Associated with Candida Albicans Biofilm Formation from Patients with Type 1 Diabetes , 2010, Mycopathologia.

[113]  Michael Seibold,et al.  Evaluation of Phenotypic Markers for Selection and Identification of Candida dubliniensis , 2000, Journal of Clinical Microbiology.

[114]  M. Pfaller,et al.  Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. , 2012, The American journal of medicine.

[115]  Gordon Ramage,et al.  Candida biofilms on implanted biomaterials: a clinically significant problem. , 2006, FEMS yeast research.

[116]  H. Nelis,et al.  Superoxide Dismutases Are Involved in Candida albicans Biofilm Persistence against Miconazole , 2011, Antimicrobial Agents and Chemotherapy.

[117]  S. H. Alves,et al.  Candida dubliniensis: Epidemiology and Phenotypic Methods for Identification , 2010, Mycopathologia.

[118]  Arturo Casadevall,et al.  Quorum sensing in fungi--a review. , 2012, Medical mycology.

[119]  G. O’Toole,et al.  Microbial Biofilms: from Ecology to Molecular Genetics , 2000, Microbiology and Molecular Biology Reviews.

[120]  Jianping Xu,et al.  Quantitative variation of biofilms among strains in natural populations of Candida albicans. , 2003, Microbiology.

[121]  E. Anaissie,et al.  Epidemiology and outcomes of candidemia in 2019 patients: data from the prospective antifungal therapy alliance registry. , 2009, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[122]  A. Mitchell,et al.  Genetic control of Candida albicans biofilm development , 2011, Nature Reviews Microbiology.

[123]  R. Grillot,et al.  Candidaemia in Europe: epidemiology and resistance. , 2006, International journal of antimicrobial agents.

[124]  H. Schønheyder,et al.  Seminational Surveillance of Fungemia in Denmark: Notably High Rates of Fungemia and Numbers of Isolates with Reduced Azole Susceptibility , 2005, Journal of Clinical Microbiology.

[125]  W. Cao,et al.  High-throughput ultrasensitive characterization of chemical, structural and plasmonic properties of EBL-fabricated single silver nanoparticles. , 2012, Nanoscale.

[126]  M. Maiden,et al.  Candida orthopsilosis and Candida metapsilosis spp. nov. To Replace Candida parapsilosis Groups II and III , 2005, Journal of Clinical Microbiology.

[127]  Guanghua Huang,et al.  Alternative Mating Type Configurations (a/α versus a/a or α/α) of Candida albicans Result in Alternative Biofilms Regulated by Different Pathways , 2011, PLoS biology.

[128]  C. d’Enfert,et al.  Endocytosis-Mediated Vacuolar Accumulation of the Human ApoE Apolipoprotein-Derived ApoEdpL-W Antimicrobial Peptide Contributes to Its Antifungal Activity in Candida albicans , 2011, Antimicrobial Agents and Chemotherapy.

[129]  J. Pemán,et al.  Comparison of 24-Hour and 48-Hour Voriconazole MICs as Determined by the Clinical and Laboratory Standards Institute Broth Microdilution Method (M27-A3 Document) in Three Laboratories: Results Obtained with 2,162 Clinical Isolates of Candida spp. and Other Yeasts , 2009, Journal of Clinical Microbiology.

[130]  A. Colombo,et al.  [Epidemiology of hematogenous infections due to Candida spp]. , 2003, Revista da Sociedade Brasileira de Medicina Tropical.

[131]  Mariana Henriques,et al.  Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. , 2012, FEMS microbiology reviews.

[132]  S. Challacombe,et al.  Candida albicans Secreted Aspartyl Proteinases in Virulence and Pathogenesis , 2003, Microbiology and Molecular Biology Reviews.

[133]  N. Peres,et al.  Antifungal Resistance Mechanisms in Dermatophytes , 2008, Mycopathologia.

[134]  N. Jain,et al.  Biofilm formation in clinical Candida isolates and its association with virulence. , 2009, Microbes and infection.

[135]  R. Rajendran,et al.  Fungal Biofilm Resistance , 2012, International journal of microbiology.

[136]  D. Andes,et al.  Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. , 2007, Antimicrobial agents and chemotherapy.

[137]  B. Wickes,et al.  Biofilms of Candida albicans and their associated resistance to antifungal agents. , 2001, American clinical laboratory.

[138]  D. Kontoyiannis,et al.  Role of ethylene diamine tetra-acetic acid (EDTA) in catheter lock solutions: EDTA enhances the antifungal activity of amphotericin B lipid complex against Candida embedded in biofilm. , 2008, International journal of antimicrobial agents.

[139]  M. Ghannoum,et al.  Fungal biofilms and antimycotics. , 2005, Current drug targets.

[140]  M. Pfaller,et al.  Multicenter Comparison of the VITEK 2 Antifungal Susceptibility Test with the CLSI Broth Microdilution Reference Method for Testing Amphotericin B, Flucytosine, and Voriconazole against Candida spp , 2007, Journal of Clinical Microbiology.

[141]  N. Chauhan,et al.  The Two-Component Signal Transduction Protein Chk1p Regulates Quorum Sensing in Candida albicans , 2004, Eukaryotic Cell.

[142]  R. Dassanayake,et al.  Differential phospholipase gene expression by Candida albicans in artificial media and cultured human oral epithelium , 2006, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[143]  D. Soll,et al.  Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces. , 2006, Microbiology.

[144]  J. Lopez-Ribot,et al.  Antibody response to Candida albicans cell wall antigens. , 2004, FEMS immunology and medical microbiology.

[145]  J. Lopez-Ribot,et al.  Our Current Understanding of Fungal Biofilms , 2009, Critical reviews in microbiology.

[146]  B. Fries,et al.  Fungal Biofilms: Relevance in the Setting of Human Disease , 2010, Current fungal infection reports.

[147]  R. H. Pires,et al.  Effect of Usnic Acid on Candida orthopsilosis and C. parapsilosis , 2011, Antimicrobial Agents and Chemotherapy.

[148]  J. Pemán,et al.  Candidemia at a Tertiary-Care Hospital: Epidemiology, Treatment, Clinical Outcome and Risk Factors for Death , 2002, European Journal of Clinical Microbiology and Infectious Diseases.

[149]  L. Didone,et al.  A novel assay of biofilm antifungal activity reveals that amphotericin B and caspofungin lyse Candida albicans cells in biofilms , 2011, Yeast.

[150]  Dae Hong Jeong,et al.  Antimicrobial effects of silver nanoparticles. , 2007, Nanomedicine : nanotechnology, biology, and medicine.

[151]  David W Williams,et al.  Adherence and biofilm formation of non-Candida albicans Candida species. , 2011, Trends in microbiology.

[152]  B. Wickes,et al.  In Vitro Pharmacodynamic Properties of Three Antifungal Agents against Preformed Candida albicans Biofilms Determined by Time-Kill Studies , 2002, Antimicrobial Agents and Chemotherapy.

[153]  J. Weng,et al.  Nano-Ag-loaded hydroxyapatite coatings on titanium surfaces by electrochemical deposition , 2011, Journal of The Royal Society Interface.

[154]  G. Fink,et al.  Nonfilamentous C. albicans Mutants Are Avirulent , 1997, Cell.

[155]  O. Franco,et al.  Identification of an antifungal peptide from Trapa natans fruits with inhibitory effects on Candida tropicalis biofilm formation , 2011, Peptides.

[156]  R. Brilhante,et al.  Candidemia in a Brazilian hospital: the importance of Candida parapsilosis. , 2006, Revista do Instituto de Medicina Tropical de Sao Paulo.

[157]  G. Quindós,et al.  Variation in biofilm formation among blood and oral isolates of Candida albicans and Candida dubliniensis. , 2011, Enfermedades infecciosas y microbiologia clinica.

[158]  J. Meis,et al.  Rapid Susceptibility Testing and Microcolony Analysis of Candida spp. Cultured and Imaged on Porous Aluminum Oxide , 2012, PloS one.

[159]  N. Narisawa,et al.  Effects of IgY against Candida albicans and Candida spp. Adherence and Biofilm Formation. , 2009, Japanese journal of infectious diseases.

[160]  T. I. E. Svidzinski,et al.  Fatores de virulência de Candida spp isoladas de cateteres venosos e mãos de servidores hospitalares , 2007 .

[161]  D. G. Lee,et al.  Antifungal effect of silver nanoparticles on dermatophytes. , 2008, Journal of microbiology and biotechnology.

[162]  J. Lopez-Ribot,et al.  Techniques for antifungal susceptibility testing of Candida albicans biofilms. , 2005, Methods in molecular medicine.

[163]  A. Mitchell,et al.  Function of Candida albicans Adhesin Hwp1 in Biofilm Formation , 2006, Eukaryotic Cell.

[164]  G. Serpelloni,et al.  Management of Candida infections in the adult intensive care unit. , 2008, Expert opinion on pharmacotherapy.

[165]  Á. Soriano,et al.  Candida species bloodstream infection: epidemiology and outcome in a single institution from 1991 to 2008. , 2011, The Journal of hospital infection.

[166]  M. Negri,et al.  [Virulence factors for Candida spp recovered from intravascular catheters and hospital workers hands]. , 2007, Revista da Sociedade Brasileira de Medicina Tropical.

[167]  Joonhee Kim,et al.  Candida albicans, a major human fungal pathogen , 2011, The Journal of Microbiology.

[168]  B. Wickes,et al.  Inhibition of Candida albicans Biofilm Formation by Farnesol, a Quorum-Sensing Molecule , 2002, Applied and Environmental Microbiology.

[169]  R. H. Pires,et al.  Anticandidal Efficacy of Cinnamon Oil Against Planktonic and Biofilm Cultures of Candida parapsilosis and Candida orthopsilosis , 2011, Mycopathologia.

[170]  P. Lipke,et al.  Candida albicans Als proteins mediate aggregation with bacteria and yeasts. , 2007, Medical mycology.

[171]  Suhail Ahmad,et al.  Prevalence of Candida dubliniensis among cancer patients in Kuwait: a 5‐year retrospective study , 2011, Mycoses.

[172]  L. Samaranayake,et al.  Quantitative evaluation of tissue invasion by wild type, hyphal and SAP mutants of Candida albicans, and non-albicans Candida species in reconstituted human oral epithelium. , 2006, Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology.

[173]  Robin Patel,et al.  Effects of Fresh Garlic Extract on Candida albicans Biofilms , 2005, Antimicrobial Agents and Chemotherapy.

[174]  D. Andes,et al.  Development and Validation of an In Vivo Candida albicans Biofilm Denture Model , 2010, Infection and Immunity.

[175]  M. Montejo Epidemiología de la infección fúngica invasora en el trasplante de órgano sólido , 2011 .

[176]  Ana Espinel-Ingroff,et al.  Antifungal drug resistance mechanisms , 2009, Expert review of anti-infective therapy.

[177]  L. Marutescu,et al.  In vitro antimicrobial activity of Romanian medicinal plants hydroalcoholic extracts on planktonic and adhered cells. , 2011, Roumanian archives of microbiology and immunology.

[178]  Cristina Kurachi,et al.  Investigation of the Photodynamic Effects of Curcumin Against Candida albicans , 2011, Photochemistry and photobiology.

[179]  A. Mitchell,et al.  Mucosal biofilms of Candida albicans. , 2011, Current opinion in microbiology.

[180]  P. Olaechea,et al.  Colonización y/o infección por hongos en unidades de cuidados intensivos. Estudio multicéntrico de 1.562 pacientes , 2003 .