The Heterogeneous P-Median Problem for Categorization Based Clustering

The p-median offers an alternative to centroid-based clustering algorithms for identifying unobserved categories. However, existing p-median formulations typically require data aggregation into a single proximity matrix, resulting in masked respondent heterogeneity. A proposed three-way formulation of the p-median problem explicitly considers heterogeneity by identifying groups of individual respondents that perceive similar category structures. Three proposed heuristics for the heterogeneous p-median (HPM) are developed and then illustrated in a consumer psychology context using a sample of undergraduate students who performed a sorting task of major U.S. retailers, as well as a through Monte Carlo analysis.

[1]  H. Simon,et al.  A Behavioral Model of Rational Choice , 1955 .

[2]  S. Addelman Orthogonal Main-Effect Plans for Asymmetrical Factorial Experiments , 1962 .

[3]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[4]  L. Tucker,et al.  An individual differences model for multidimensional scaling , 1963 .

[5]  Francesco E. Maranzana,et al.  On the Location of Supply Points to Minimize Transportation Costs , 1963, IBM Syst. J..

[6]  E. Forgy,et al.  Cluster analysis of multivariate data : efficiency versus interpretability of classifications , 1965 .

[7]  S. C. Johnson Hierarchical clustering schemes , 1967, Psychometrika.

[8]  George A. Miller,et al.  A psychological method to investigate verbal concepts , 1969 .

[9]  Ralph Katz,et al.  Alternative Multidimensional Scaling Methods for Large Stimulus Sets , 1971 .

[10]  Stephen K. Reed,et al.  Pattern recognition and categorization , 1972 .

[11]  E. Rosch,et al.  Family resemblances: Studies in the internal structure of categories , 1975, Cognitive Psychology.

[12]  E. Rosch,et al.  Relationships among goodness-of-example, category norms, and word frequency , 1976 .

[13]  E. Rosch,et al.  Structural bases of typicality effects. , 1976 .

[14]  S. Kelter,et al.  The conceptual structure of aphasic and schizophrenic patients in a nonverbal sorting task , 1977, Journal of psycholinguistic research.

[15]  Stephen K. Reed,et al.  Category vs. item learning: Implications for categorization models , 1978, Memory & cognition.

[16]  Douglas L. Medin,et al.  Context theory of classification learning. , 1978 .

[17]  O. Kariv,et al.  An Algorithmic Approach to Network Location Problems. II: The p-Medians , 1979 .

[18]  Y. Takane Analysis of Categorizing Behavior by a Quantification Method , 1980 .

[19]  Steven M. Shugan The Cost Of Thinking , 1980 .

[20]  W. DeSarbo Gennclus: New models for general nonhierarchical clustering analysis , 1982 .

[21]  A. Isen,et al.  Toward understanding the role of affect in cognition. , 1984 .

[22]  W. DeSarbo,et al.  Three-way metric unfolding via alternating weighted least squares , 1985 .

[23]  L. Hubert,et al.  Comparing partitions , 1985 .

[24]  T. Klastorin The p-Median Problem for Cluster Analysis: A Comparative Test Using the Mixture Model Approach , 1985 .

[25]  E. Baum Towards practical `neural' computation for combinatorial optimization problems , 1987 .

[26]  M. Sujan,et al.  Product Categorization and Inference Making: Some Implications for Comparative Advertising , 1987 .

[27]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[28]  W. DeSarbo,et al.  A maximum likelihood methodology for clusterwise linear regression , 1988 .

[29]  George W. Furnas,et al.  Metric family portraits , 1989 .

[30]  Deborah Roedder John,et al.  Age Differences in Product Categorization , 1990 .

[31]  B. Lakey,et al.  Cognitive processes in perceived social support. , 1990 .

[32]  W. DeSarbo,et al.  A stochastic multidimensional scaling procedure for the spatial representation of three-mode, three-way pick any/J data , 1991 .

[33]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[34]  Paul E. Green,et al.  A Computational Study of Replicated Clustering with an Application to Market Segmentation , 1991 .

[35]  J. Hulland,et al.  Premarket Forecasting for New Consumer Durable Goods: Modeling Categorization, Elimination, and Consideration Phenomena , 1993 .

[36]  Abbie Griffin,et al.  The Voice of the Customer , 1993 .

[37]  W. Perkins,et al.  The effects of experience and education on the organization of marketing knowledge , 1993 .

[38]  Pat Langley,et al.  Elements of Machine Learning , 1995 .

[39]  Gregory Ashby,et al.  On the Dangers of Averaging Across Subjects When Using Multidimensional Scaling or the Similarity-Choice Model , 1994 .

[40]  Michel Wedel,et al.  The effects of alternative methods of collecting similarity data for Multidimensional Scaling , 1995 .

[41]  Christodoulos A. Floudas,et al.  Nonlinear and Mixed-Integer Optimization , 1995 .

[42]  J. Daws The analysis of free-sorting data: Beyond pairwise cooccurrences , 1996 .

[43]  R D Clark,et al.  Contemporary marketing. , 1996, Seminars in veterinary medicine and surgery.

[44]  Eliot R. Smith,et al.  Accessible attitudes influence categorization of multiply categorizable objects. , 1996, Journal of personality and social psychology.

[45]  Pierre Hansen,et al.  Variable Neighborhood Search , 2018, Handbook of Heuristics.

[46]  M. Wedel,et al.  Market Segmentation: Conceptual and Methodological Foundations , 1997 .

[47]  R. Fazio,et al.  Categorization by Race: The Impact of Automatic and Controlled Components of Racial Prejudice , 1997 .

[48]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[49]  P. Schyns,et al.  Concept learning , 1998 .

[50]  M. F. Luce,et al.  Constructive Consumer Choice Processes , 1998 .

[51]  P. Todd,et al.  Simple Heuristics That Make Us Smart , 1999 .

[52]  Brian H. Ross,et al.  Food for Thought: Cross-Classification and Category Organization in a Complex Real-World Domain , 1999, Cognitive Psychology.

[53]  Anthony Peter Macmillan Coxon,et al.  Sorting Data: Collection and Analysis , 1999 .

[54]  Pierre Hansen,et al.  Variable neighborhood search: Principles and applications , 1998, Eur. J. Oper. Res..

[55]  M. Lee Determining the Dimensionality of Multidimensional Scaling Representations for Cognitive Modeling. , 2001, Journal of mathematical psychology.

[56]  Michael J. Brusco,et al.  Multicriterion Clusterwise Regression for Joint Segmentation Settings: An Application to Customer Value , 2003 .

[57]  Pierre Hansen,et al.  Cooperative Parallel Variable Neighborhood Search for the p-Median , 2004, J. Heuristics.

[58]  M. Brusco,et al.  ConPar: a method for identifying groups of concordant subject proximity matrices for subsequent multidimensional scaling analyses , 2005 .

[59]  Michel Laroche,et al.  The Critical Role of Congruency in Prototypical Brand Extensions , 2006 .

[60]  Chih-Chien Yang,et al.  Separating Latent Classes by Information Criteria , 2007, J. Classif..

[61]  M. Brusco,et al.  Optimal Partitioning of a Data Set Based on the p-Median Model , 2008 .

[62]  Pierre Hansen,et al.  The p-median problem: A survey of metaheuristic approaches , 2005, Eur. J. Oper. Res..

[63]  Hans-Friedrich Köhn,et al.  Comment on "Clustering by Passing Messages Between Data Points" , 2008, Science.

[64]  Zvi Drezner,et al.  The p-median problem under uncertainty , 2008, Eur. J. Oper. Res..

[65]  Pierre Hansen,et al.  Solving large p-median clustering problems by primal–dual variable neighborhood search , 2009, Data Mining and Knowledge Discovery.

[66]  Katya Scheinberg,et al.  Introduction to derivative-free optimization , 2010, Math. Comput..

[67]  Michael J. Brusco,et al.  Exemplar-Based Clustering via Simulated Annealing , 2009 .

[68]  M. Brusco,et al.  The p-median model as a tool for clustering psychological data. , 2010, Psychological methods.

[69]  M. Behlol,et al.  Concept of Learning , 2010 .

[70]  T. Evgeniou,et al.  Disjunctions of Conjunctions, Cognitive Simplicity, and Consideration Sets , 2010 .

[71]  W. DeSarbo,et al.  Identifying consumer heterogeneity in unobserved categories , 2011, Marketing Letters.