Deterministic Performance Bounds on the Mean Square Error for Near Field Source Localization

This correspondence investigates lower bounds on estimator's mean square error applied to the passive near field source localization. More precisely, we focus on the so-called threshold prediction for which these bounds are known to be useful. We give closed form expressions of the McAulay-Seidman, the Hammersley-Chapman-Robbins, the McAulay-Hofstetter bounds and also, a recently proposed bound, the so-called Todros-Tabrikian bound, for the deterministic observation model (i.e., parameterized mean) and the stochastic observation model (i.e., parameterized covariance matrix). Finally, numerical simulations are given to assess the efficiency of these lower bounds to approximate the estimator's mean square error and to predict the threshold effect.

[1]  M. Barkat,et al.  Near-field multiple source localization by passive sensor array , 1991 .

[2]  Petre Stoica,et al.  MUSIC, maximum likelihood, and Cramer-Rao bound: further results and comparisons , 1990, IEEE Trans. Acoust. Speech Signal Process..

[3]  Petre Stoica,et al.  MUSIC, maximum likelihood, and Cramer-Rao bound , 1989, IEEE Transactions on Acoustics, Speech, and Signal Processing.

[4]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[5]  E. Barankin Locally Best Unbiased Estimates , 1949 .

[6]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[7]  Kaare Brandt Petersen,et al.  The Matrix Cookbook , 2006 .

[8]  Mohammed Nabil El Korso,et al.  Nonmatrix closed-form expressions of the Cramér-Rao Bounds for near-field localization parameters , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[9]  Emmanuèle Grosicki,et al.  A weighted linear prediction method for near-field source localization , 2002, IEEE Transactions on Signal Processing.

[10]  Edward M. Hofstetter,et al.  Barankin Bounds on Parameter Estimation , 1971, IEEE Trans. Inf. Theory.

[11]  F. Glave,et al.  A new look at the Barankin lower bound , 1972, IEEE Trans. Inf. Theory.

[12]  Guillaume Bouleux,et al.  Sequential estimation of the range and the bearing using the Zero-Forcing Music approach , 2009, 2009 17th European Signal Processing Conference.

[13]  J. Hammersley On Estimating Restricted Parameters , 1950 .

[14]  Lawrence P. Seidman,et al.  A useful form of the Barankin lower bound and its application to PPM threshold analysis , 1969, IEEE Trans. Inf. Theory.

[15]  Philippe Forster,et al.  On lower bounds for deterministic parameter estimation , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[16]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[17]  Petre Stoica,et al.  Performance study of conditional and unconditional direction-of-arrival estimation , 1990, IEEE Trans. Acoust. Speech Signal Process..

[18]  Pascal Larzabal,et al.  From Chapman-Robbins bound towards Barankin bound in threshold behaviour prediction , 2004 .

[19]  Joseph Tabrikian,et al.  General Classes of Performance Lower Bounds for Parameter Estimation—Part I: Non-Bayesian Bounds for Unbiased Estimators , 2010, IEEE Transactions on Information Theory.

[20]  Eric Chaumette,et al.  A New Barankin Bound Approximation for the Prediction of the Threshold Region Performance of Maximum Likelihood Estimators , 2008, IEEE Transactions on Signal Processing.

[21]  Brian M. Sadler,et al.  Source localization with distributed sensor arrays and partial spatial coherence , 2004, IEEE Transactions on Signal Processing.

[22]  Pascal Larzabal,et al.  SNR threshold indicator in data-aided frequency synchronization , 2004, IEEE Signal Processing Letters.

[23]  Benjamin Friedlander,et al.  Performance analysis of higher order ESPRIT for localization of near-field sources , 1998, IEEE Trans. Signal Process..

[24]  Michael Yan Wah Chia,et al.  Near-Field Source Localization via Symmetric Subarrays , 2007, IEEE Signal Processing Letters.

[25]  Philippe Forster,et al.  Nonasymptotic statistical performance of beamforming for deterministic signals , 2004, IEEE Signal Processing Letters.