Multiple sequence alignment using the Hidden Markov Model trained by an improved quantum-behaved particle swarm optimization

Multiple sequence alignment (MSA) is an NP-complete and important problem in bioinformatics. For MSA, Hidden Markov Models (HMMs) are known to be powerful tools. However, the training of HMMs is computationally hard so that metaheuristic methods such as simulated annealing (SA), evolutionary algorithms (EAs) and particle swarm optimization (PSO), have been employed to tackle the training problem. In this paper, quantum-behaved particle swarm optimization (QPSO), a variant of PSO, is analyzed mathematically firstly, and then an improved version is proposed to train the HMMs for MSA. The proposed method, called diversity-maintained QPSO (DMQPO), is based on the analysis of QPSO and integrates a diversity control strategy into QPSO to enhance the global search ability of the particle swarm. To evaluate the performance of the proposed method, we use DMQPSO, QPSO and other algorithms to train the HMMs for MSA on three benchmark datasets. The experiment results show that the HMMs trained with DMQPSO and QPSO yield better alignments for the benchmark datasets than other most commonly used HMM training methods such as Baum-Welch and PSO.

[1]  Leandro dos Santos Coelho,et al.  MESFET DC model parameter extraction using Quantum Particle Swarm Optimization , 2009, Microelectron. Reliab..

[2]  Richard Hughey,et al.  Hidden Markov models for detecting remote protein homologies , 1998, Bioinform..

[3]  Zne-Jung Lee,et al.  Genetic algorithm with ant colony optimization (GA-ACO) for multiple sequence alignment , 2008, Appl. Soft Comput..

[4]  René Thomsen Evolving the Topology of Hidden Markov Models Using Evolutionary Algorithms , 2002, PPSN.

[5]  Wenbo Xu,et al.  Solving the economic dispatch problem with a modified quantum-behaved particle swarm optimization method , 2009 .

[6]  R. Durbin,et al.  Pfam: A comprehensive database of protein domain families based on seed alignments , 1997, Proteins.

[7]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[8]  D. Higgins,et al.  SAGA: sequence alignment by genetic algorithm. , 1996, Nucleic acids research.

[9]  Xiaodong Li,et al.  This article has been accepted for inclusion in a future issue. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1 Locating and Tracking Multiple Dynamic Optima by a Particle Swarm Model Using Speciation , 2022 .

[10]  Folker Meyer,et al.  Rose: generating sequence families , 1998, Bioinform..

[11]  Wenbo Xu,et al.  Particle swarm optimization with particles having quantum behavior , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[12]  M. A. McClure,et al.  Hidden Markov models of biological primary sequence information. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Jun Sun,et al.  A global search strategy of quantum-behaved particle swarm optimization , 2004, IEEE Conference on Cybernetics and Intelligent Systems, 2004..

[14]  Thomas Stützle,et al.  Frankenstein's PSO: A Composite Particle Swarm Optimization Algorithm , 2009, IEEE Transactions on Evolutionary Computation.

[15]  Sanghamitra Bandyopadhyay,et al.  Multi-Objective Particle Swarm Optimization with time variant inertia and acceleration coefficients , 2007, Inf. Sci..

[16]  L. Baum,et al.  A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains , 1970 .

[17]  Joaquín Bautista,et al.  Multiobjective constructive heuristics for the 1/3 variant of the time and space assembly line balancing problem: ACO and random greedy search , 2010, Inf. Sci..

[18]  S. Henikoff,et al.  Amino acid substitution matrices from protein blocks. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[19]  高飞,et al.  Parameters estimation online for Lorenz system by a novel quantum-behaved particle swarm optimization , 2008 .

[20]  L. Coelho A quantum particle swarm optimizer with chaotic mutation operator , 2008 .

[21]  Kim-Fung Man,et al.  Optimisation of HMM topology and its model parameters by genetic algorithms , 2001, Pattern Recognit..

[22]  Rasmus K. Ursem,et al.  Diversity-Guided Evolutionary Algorithms , 2002, PPSN.

[23]  R. Doolittle,et al.  Progressive sequence alignment as a prerequisitetto correct phylogenetic trees , 2007, Journal of Molecular Evolution.

[24]  James Kennedy,et al.  Bare bones particle swarms , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[25]  Weiwei Hu,et al.  A New QPSO Based BP Neural Network for Face Detection , 2007, ICFIE.

[26]  Wenbo Xu,et al.  Quantum-Behaved Particle Swarm Optimization Clustering Algorithm , 2006, ADMA.

[27]  Thomas Stützle,et al.  An analysis of communication policies for homogeneous multi-colony ACO algorithms , 2010, Inf. Sci..

[28]  Shawki Areibi,et al.  Strength Pareto Particle Swarm Optimization and Hybrid EA-PSO for Multi-Objective Optimization , 2010, Evolutionary Computation.

[29]  A.A. Kishk,et al.  Quantum Particle Swarm Optimization for Electromagnetics , 2006, IEEE Transactions on Antennas and Propagation.

[30]  Peter J. Angeline,et al.  Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences , 1998, Evolutionary Programming.

[31]  Jing Liu,et al.  Using quantum-behaved particle swarm optimization algorithm to solve non-linear programming problems , 2007, Int. J. Comput. Math..

[32]  Kumar Chellapilla,et al.  Multiple sequence alignment using evolutionary programming , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[33]  Yalan Zhou,et al.  Quantum-Behaved Particle Swarm Optimization with Generalized Local Search Operator for Global Optimization , 2009, ICIC.

[34]  P. Alotto,et al.  Global Optimization of Electromagnetic Devices Using an Exponential Quantum-Behaved Particle Swarm Optimizer , 2008, IEEE Transactions on Magnetics.

[35]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[36]  Xiaodong Li,et al.  Niching Without Niching Parameters: Particle Swarm Optimization Using a Ring Topology , 2010, IEEE Transactions on Evolutionary Computation.

[37]  Wei Chen,et al.  Clustering of Gene Expression Data with Quantum-Behaved Particle Swarm Optimization , 2008, IEA/AIE.

[38]  M. Clerc,et al.  The swarm and the queen: towards a deterministic and adaptive particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[39]  Yongji Wang,et al.  A new improved Quantum-behaved Particle Swarm Optimization model , 2009, 2009 4th IEEE Conference on Industrial Electronics and Applications.

[40]  Bin Li,et al.  Multi-strategy ensemble particle swarm optimization for dynamic optimization , 2008, Inf. Sci..

[41]  D. Haussler,et al.  Hidden Markov models in computational biology. Applications to protein modeling. , 1993, Journal of molecular biology.

[42]  Rob Law,et al.  Complex system fault diagnosis based on a fuzzy robust wavelet support vector classifier and an adaptive Gaussian particle swarm optimization , 2010, Inf. Sci..

[43]  Hao Gao,et al.  Multilevel Thresholding for Image Segmentation Through an Improved Quantum-Behaved Particle Swarm Algorithm , 2010, IEEE Transactions on Instrumentation and Measurement.

[44]  D. Mount Bioinformatics: Sequence and Genome Analysis , 2001 .

[45]  Martin Middendorf,et al.  A hierarchical particle swarm optimizer and its adaptive variant , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[46]  S Brunak,et al.  Multiple alignment using simulated annealing: branch point definition in human mRNA splicing. , 1992, Nucleic acids research.

[47]  Moon-Jung Chung,et al.  Multiple sequence alignment using simulated annealing , 1994, Comput. Appl. Biosci..

[48]  Ricardo de A. Araújo Swarm-based translation-invariant morphological prediction method for financial time series forecasting , 2010, Inf. Sci..

[49]  Ajith Abraham,et al.  A new quantum behaved particle swarm optimization , 2008, GECCO '08.

[50]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[51]  Xiujuan Lei,et al.  Two-Dimensional Maximum Entropy Image Segmentation Method Based on Quantum-Behaved Particle Swarm Optimization Algorithm , 2008, 2008 Fourth International Conference on Natural Computation.

[52]  Paul H. Calamai,et al.  Exchange strategies for multiple Ant Colony System , 2007, Inf. Sci..

[53]  Yanrui Ding,et al.  Optimizing the codon usage of synthetic gene with QPSO algorithm. , 2008, Journal of theoretical biology.

[54]  Riccardo Poli,et al.  Mean and Variance of the Sampling Distribution of Particle Swarm Optimizers During Stagnation , 2009, IEEE Transactions on Evolutionary Computation.

[55]  Mohamed Slimane,et al.  Optimizing Hidden Markov Models with a Genetic Algorithm , 1995, Artificial Evolution.

[56]  Tao Jiang,et al.  On the Complexity of Multiple Sequence Alignment , 1994, J. Comput. Biol..

[57]  Jing Liu,et al.  Quantum-behaved particle swarm optimization with mutation operator , 2005, 17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05).

[58]  Wenbo Xu,et al.  Adaptive parameter control for quantum-behaved particle swarm optimization on individual level , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[59]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[60]  Olivier Poch,et al.  A comprehensive comparison of multiple sequence alignment programs , 1999, Nucleic Acids Res..

[61]  Thomas Kiel Rasmussen,et al.  Improved Hidden Markov Model training for multiple sequence alignment by a particle swarm optimization-evolutionary algorithm hybrid. , 2003, Bio Systems.

[62]  S. N. Omkar,et al.  Quantum behaved Particle Swarm Optimization (QPSO) for multi-objective design optimization of composite structures , 2009, Expert Syst. Appl..

[63]  Sean R. Eddy,et al.  Multiple Alignment Using Hidden Markov Models , 1995, ISMB.

[64]  Yujia Wang,et al.  Particle swarm optimization with preference order ranking for multi-objective optimization , 2009, Inf. Sci..

[65]  Gianluigi Mongillo,et al.  Online Learning with Hidden Markov Models , 2008, Neural Computation.

[66]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[67]  Xiaodong Li,et al.  Erratum to "Niching Without Niching Parameters: Particle Swarm Optimization Using a Ring Topology" [Feb 10 150-169] , 2010, IEEE Trans. Evol. Comput..