A nonlinear stochastic model of fatigue crack dynamics

This paper presents a nonlinear stochastic model for prediction of fatigue crack damage in metallic materials. The model structure allows estimation of the current damage state and prediction of the remaining service life based on the underlying principle of Gauss-Markov processes without solving the extended Kalman filter equation in the Wiener integral setting or the Kolmogorov forward equation in the Ito integral setting. The model results have been verified with experimentally-generated statistical data of time-dependent fatigue cracks for 2024-T3 and 7075-T6 aluminum alloys.

[1]  James C. Newman,et al.  An assessment of the small-crack effect for 2024-T3 aluminum alloy , 1986 .

[2]  Ove Ditlevsen,et al.  Statistical analysis of the virkler data on fatigue crack growth , 1986 .

[3]  Hui Fan,et al.  Prediction of Service Life for Machines and Structures , 1990 .

[4]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[5]  J. N. Yang,et al.  Aircraft fleet maintenance based on structural reliability analysis , 1994 .

[6]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[7]  Hamouda Ghonem,et al.  Experimental study of the constant-probability crack growth curves under constant amplitude loading , 1987 .

[8]  Ove Ditlevsen,et al.  Random fatigue crack growth—a first passage problem , 1986 .

[9]  Thomas Joseph Enneking On the stochastic fatigue crack growth problem , 1991 .

[10]  Michael S. Holmes Damage-mitigating control of mechanical systems , 1997 .

[11]  Akira Tsurui,et al.  Application of the Fokker-Planck equation to a stochastic fatigue crack growth model , 1986 .

[12]  Asok Ray,et al.  Stochastic modeling of fatigue crack dynamics for on-line failure prognostics , 1996, IEEE Trans. Control. Syst. Technol..

[13]  S. Suresh Fatigue of materials , 1991 .

[14]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[15]  M. E. Artley,et al.  A stochastic approach to modeling fatigue crack growth , 1988 .

[16]  P. Goel,et al.  The Statistical Nature of Fatigue Crack Propagation , 1979 .

[17]  Jinjun Tang,et al.  MARKOV PROCESS MODEL FOR FATIGUE CRACK GROWTH , 1988 .

[18]  J. Yang,et al.  On statistical moments of fatigue crack propagation , 1983 .

[19]  Hiroshi Ishikawa,et al.  Reliability assessment of structures based upon probabilistic fracture mechanics , 1994 .

[20]  J. Newman A crack-closure model for predicting fatigue crack growth under aircraft spectrum loading , 1981 .

[21]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[22]  A. Tsurui,et al.  THE EFFECT OF STRESS RATIO ON THE CRACK PROPAGATION LIFE DISTRIBUTION UNDER RANDOM LOADING , 1994 .