Hierarchically Structured Nanotubes for Highly Efficient Dye‐Sensitized Solar Cells

Hierarchical TiO2 nanotube arrays grown on Ti foil are yielded by subjecting electrochemically anodized, vertically oriented TiO2 nanotube arrays to hydrothermal processing. The resulting DSSCs exhibit a significantly enhanced power conversion efficiency of 7.24%, which is a direct consequence of the synergy of higher dye loading, superior light-scattering ability, and fast electron transport.

[1]  Jun Wang,et al.  Anodic Formation of Ordered TiO2 Nanotube Arrays: Effects of Electrolyte Temperature and Anodization Potential , 2009 .

[2]  J. Leckie,et al.  Self-etching reconstruction of hierarchically mesoporous F-TiO2 hollow microspherical photocatalyst for concurrent membrane water purifications. , 2008, Journal of the American Chemical Society.

[3]  Zhiqun Lin,et al.  Dye-sensitized TiO2 nanotube solar cells: rational structural and surface engineering on TiO2 nanotubes. , 2012, Chemistry, an Asian journal.

[4]  Y. Okada,et al.  Control of optical bandgap energy and optical absorption coefficient by geometric parameters in sub-10 nm silicon-nanodisc array structure , 2012, Nanotechnology.

[5]  Zhiqun Lin,et al.  High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays. , 2012, Journal of the American Chemical Society.

[6]  Xuefeng Guo,et al.  Fabrication of rutile TiO2 tapered nanotubes with rectangular cross-sections via anisotropic corrosion route. , 2010, Chemical communications.

[7]  J. S. Lees,et al.  A structural investigation of titanium dioxide photocatalysts , 1991 .

[8]  L. Mädler,et al.  Photocatalytic H2 Evolution over TiO2 Nanoparticles. The Synergistic Effect of Anatase and Rutile , 2010 .

[9]  Tao Chen,et al.  Photoluminescence Characteristics of TiO2 and Their Relationship to the Photoassisted Reaction of Water/Methanol Mixture , 2007 .

[10]  Jing Sun,et al.  Template-free synthesis of hierarchical TiO2 structures and their application in dye-sensitized solar cells. , 2011, ACS applied materials & interfaces.

[11]  Zhiqun Lin,et al.  Freestanding TiO2 Nanotube Arrays with Ultrahigh Aspect Ratio via Electrochemical Anodization , 2008 .

[12]  J. Banfield,et al.  Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2 , 1997 .

[13]  Henghui Zhou,et al.  Nanotube-based hierarchical titanate microspheres: an improved anode structure for Li-ion batteries. , 2012, Chemical communications.

[14]  K. Choy,et al.  Synthesis, microstructure and optical properties of ZnS films formed by electrostatic assisted aerosol jet deposition , 2000 .

[15]  Ryuji Kikuchi,et al.  Impedance analysis for dye-sensitized solar cells with a three-electrode system , 2005 .

[16]  Victor S Batista,et al.  Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solar cells. , 2009, Dalton transactions.

[17]  H. Imai,et al.  Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions. , 2004, Journal of the American Chemical Society.

[18]  Changjian Lin,et al.  High efficiency dye-sensitized solar cells based on hierarchically structured nanotubes. , 2011, Nano letters.

[19]  Zhiqun Lin,et al.  Formation of various TiO2nanostructures from electrochemically anodized titanium , 2009 .

[20]  Luyuan Zhang,et al.  Large scale synthesis and gas-sensing properties of anatase TiO2 three-dimensional hierarchical nanostructures. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[21]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[22]  Zhiqun Lin,et al.  Hierarchical rutile TiO2 flower cluster-based high efficiency dye-sensitized solar cells via direct hydrothermal growth on conducting substrates. , 2013, Small.

[23]  Song-Yeu Tsai,et al.  Formation of Branched ZnO Nanowires from Solvothermal Method and Dye-Sensitized Solar Cells Applications , 2008 .

[24]  S. Stupp,et al.  Supramolecular templating of single and double nanohelices of cadmium sulfide. , 2005, Small.

[25]  Craig A. Grimes,et al.  Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes , 2006 .

[26]  Craig A. Grimes,et al.  Recent Advances in the Use of TiO2 Nanotube and Nanowire Arrays for Oxidative Photoelectrochemistry , 2009 .

[27]  D. Y. Kim,et al.  Electrospray preparation of hierarchically-structured mesoporous TiO₂ spheres for use in highly efficient dye-sensitized solar cells. , 2011, ACS applied materials & interfaces.

[28]  Xianzhi Fu,et al.  Synthesis of M@TiO2 (M = Au, Pd, Pt) Core–Shell Nanocomposites with Tunable Photoreactivity , 2011 .

[29]  Zhiqun Lin,et al.  Low-cost copper zinc tin sulfide counter electrodes for high-efficiency dye-sensitized solar cells. , 2011, Angewandte Chemie.

[30]  Zhiqun Lin,et al.  Dye-Sensitized TiO2 Nanotube Solar Cells with Markedly Enhanced Performance via Rational Surface Engineering , 2010 .

[31]  Xiaolin Zheng,et al.  Branched TiO₂ nanorods for photoelectrochemical hydrogen production. , 2011, Nano letters.

[32]  J. Tauc,et al.  Optical and Magnetic Investigations of the Localized States in Semiconducting Glasses , 1970 .

[33]  Aaron Wold,et al.  Photocatalytic properties of titanium dioxide (TiO2) , 1993 .

[34]  E. Diau,et al.  Fabrication and Characterization of Anodic Titanium Oxide Nanotube Arrays of Controlled Length for Highly Efficient Dye-Sensitized Solar Cells , 2008 .

[35]  Samuel I Stupp,et al.  Semiconductor nanohelices templated by supramolecular ribbons. , 2002, Angewandte Chemie.

[36]  Craig A Grimes,et al.  Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.