Cutting parameter optimization of Al-6063-O using numerical simulations and particle swarm optimization

Machining process simulations are commonly used by manufacturing industries to accurately predict machining force, time, and the performance of engineering components. Determination of optimal conditions of machining parameters is fundamental as it directly affects the material properties, surface finish quality, and the cutting tool life, among other objectives. In this work, we propose a multi-objective particle swarm optimization (PSO) algorithm, in order to determine the optimal machining parameters; i.e., rake angle (α), velocity (V ), and cutting feed (f ) using finite element (FE) simulation of orthogonal cutting. We evaluate the optimality of the problem for three objectives: (i) minimize the cutting force, (ii) maximize the microstructure refinement, and (iii) maximize material removal rate (MRR) in machining of Aluminum 6063. Minimum cutting force, higher refinement, and higher MRR are desirable in order to achieve enhanced cutting tool life, higher strength of the material, and higher machining performance, respectively. First, we develop the input-output relationships as well as the in-process parameter correlations using response surface methodology (RSM) and artificial neural network (ANN). Next, we use the particle swarm optimization technique combined with weight aggregation method to solve the multi-objective PSO (MOPSO) problem resulting in Pareto optimal solutions. Finally, we compare three machining conditions from the Pareto front in which one of the objective functions is optimized and the results show that a trade-off point can be drawn among the low cutting force, high microstructure refinement, and high MRR. A sample condition from the Pareto front is created experimentally resulting in good agreement with the model output. The optimization models can potentially enable the achievements of the desired objectives through the integration of the MOPSO algorithm with most of the available finite element simulations of machining.

[1]  Dimitra Dodou,et al.  Human Subject Research for Engineers , 2017 .

[2]  Cristian Caizar,et al.  Application of Taguchi method to selection of optimal lubrication and cutting conditions in face milling of AlMg3 , 2011 .

[3]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[4]  Siti Zaiton Mohd Hashim,et al.  Overview of PSO for optimizing process parameters of machining , 2012 .

[5]  B. Mondal,et al.  TAGUCHI METHOD AND ANOVA: AN APPROACH FOR PROCESS PARAMETERS OPTIMIZATION OF HARD MACHINING WHILE MACHINING HARDENED STEEL , 2009 .

[6]  T. R. Bement,et al.  Taguchi techniques for quality engineering , 1995 .

[7]  A. Pirondi,et al.  Identification of the parameters of a non-linear continuum damage mechanics model for ductile failure in metals , 2004 .

[8]  Paul Mativenga,et al.  Calculation of optimum cutting parameters based on minimum energy footprint , 2011 .

[9]  C.-T. Su,et al.  Optimization of machining conditions for turning cylindrical stocks into continuous finished profiles , 1998 .

[10]  G. G. Wang,et al.  Adaptive Response Surface Method Using Inherited Latin Hypercube Design Points , 2003 .

[11]  Victor Songmene,et al.  A comprehensive review of finite element modeling of orthogonal machining process: chip formation and surface integrity predictions , 2018 .

[12]  Surjya K. Pal,et al.  Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-II , 2007 .

[13]  R. Valiev Nanostructuring of metallic materials by spd processing for advanced properties , 2009 .

[14]  Vimal Dhokia,et al.  Energy efficient process planning for CNC machining , 2012 .

[15]  Jun Zhao,et al.  The effects of cutting parameters on tool life and wear mechanisms of CBN tool in high-speed face milling of hardened steel , 2013 .

[16]  Indrajit Mukherjee,et al.  A review of optimization techniques in metal cutting processes , 2006, Comput. Ind. Eng..

[17]  Wang Heping,et al.  Predicting the Effects of Cutting Parameters and Tool Geometry on Hard Turning Process Using Finite Element Method , 2011 .

[18]  G C Onwubolu,et al.  Multi-pass turning operations optimization based on genetic algorithms , 2001 .

[19]  A finite-element heat transfer model for orthogonal cutting , 2020 .

[20]  Kaushik Kumar,et al.  Optimization of Material Removal Rate in EDM Using Taguchi Method , 2012 .

[21]  Hari Singh,et al.  Optimization of machining techniques — A retrospective and literature review , 2005 .

[22]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[23]  Uday S. Dixit,et al.  Application of soft computing techniques in machining performance prediction and optimization: a literature review , 2010 .

[24]  Frederick S. Hillier,et al.  Introduction of Operations Research , 1967 .

[25]  ZainAzlan Mohd,et al.  Evolutionary techniques in optimizing machining parameters , 2012 .

[26]  Olivier L. de Weck,et al.  Adaptive Weighted Sum Method for Multiobjective Optimization , 2004 .

[27]  Ali R. Yildiz,et al.  Hybrid Taguchi-differential evolution algorithm for optimization of multi-pass turning operations , 2013, Appl. Soft Comput..

[28]  Nicola Bonora,et al.  A nonlinear CDM model for ductile failure , 1997 .

[29]  Philippe Bocher,et al.  Finite element simulation and analysis of serrated chip formation during high–speed machining of AA7075–T651 alloy , 2017 .

[30]  Yancheng Zhang,et al.  On the selection of Johnson-Cook constitutive model parameters for Ti-6Al-4V using three types of numerical models of orthogonal cutting , 2015 .

[31]  R. C. Creese,et al.  A generalized multi-pass machining model for machining parameter selection in turning , 1995 .

[32]  Vishal S. Sharma,et al.  A review of empirical modeling techniques to optimize machining parameters for hard turning applications , 2016 .

[33]  Moneer M. Helu,et al.  Impact of green machining strategies on achieved surface quality , 2012 .

[34]  T. Yokota,et al.  New concepts for ultra refinement of grain size in Super Metal Project , 2001 .

[35]  Liang Zhu,et al.  Damage and fracture mechanism of 6063 aluminum alloy under three kinds of stress states , 2008 .

[36]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[37]  Marco Tomassini,et al.  Particle Swarm Optimization , 2018 .

[38]  D. Agard,et al.  Microtubule nucleation by γ-tubulin complexes , 2011, Nature Reviews Molecular Cell Biology.

[39]  Babur Ozcelik,et al.  Evaluation of vegetable based cutting fluids with extreme pressure and cutting parameters in turning of AISI 304L by Taguchi method , 2011 .

[40]  J. P. Casas-Rodriguez,et al.  Predicting the Johnson Cook constitutive model constants using temperature rise distribution in plane strain machining , 2019, The International Journal of Advanced Manufacturing Technology.

[41]  N. Tsuji,et al.  Ultrafine grained copper alloy sheets having both high strength and high electric conductivity , 2009 .

[42]  Christopher Saldana,et al.  Enhanced subsurface grain refinement during transient shear-based surface generation , 2016 .

[43]  Michael N. Vrahatis,et al.  Multi-Objective Particles Swarm Optimization Approaches , 2008 .

[44]  Bernhard Sendhoff,et al.  Adapting Weighted Aggregation for Multiobjective Evolution Strategies , 2001, EMO.

[45]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[46]  M. Shankar,et al.  Mapping subgrain sizes resulting from severe simple shear deformation , 2012 .

[47]  Joost Duflou,et al.  Optimization of energy consumption and surface quality in finish turning , 2012 .

[48]  Tuğrul Özel,et al.  Multi-objective optimization for turning processes using neural network modeling and dynamic-neighborhood particle swarm optimization , 2007 .

[49]  Jean Lemaitre,et al.  A Course on Damage Mechanics , 1992 .

[50]  J. P. Casas-Rodriguez,et al.  Microstructure prediction in low and high strain deformation of Al6063 using artificial neural network and finite element simulation , 2019, The International Journal of Advanced Manufacturing Technology.

[51]  Siti Zaiton Mohd Hashim,et al.  Evolutionary techniques in optimizing machining parameters: Review and recent applications (2007-2011) , 2012, Expert Syst. Appl..

[52]  Yih-fong Tzeng,et al.  Optimization of the High-Speed CNC Milling Process Using Two-Phase Parameter Design Strategy by the Taguchi Methods , 2005 .

[53]  Huang Yuan,et al.  FEM mesh-dependence in cutting process simulations , 2011 .

[54]  Habibollah Haron,et al.  Application of Regression and ANN Techniques for Modeling of the Surface Roughness in End Milling Machining Process , 2009, 2009 Third Asia International Conference on Modelling & Simulation.

[55]  Z. Zhang,et al.  Optimizing strength and ductility of austenitic stainless steels through equal-channel angular pressing and adding nitrogen element , 2013 .

[56]  Rajesh Kumar Bhushan,et al.  Multiresponse Optimization of Al Alloy-SiC Composite Machining Parameters for Minimum Tool Wear and Maximum Metal Removal Rate , 2013 .

[57]  Habibollah Haron,et al.  Fuzzy logic for modeling machining process: a review , 2013, Artificial Intelligence Review.

[58]  M. Bezerra,et al.  Response surface methodology (RSM) as a tool for optimization in analytical chemistry. , 2008, Talanta.

[59]  Anirban Bhattacharya,et al.  Estimating the effect of cutting parameters on surface finish and power consumption during high speed machining of AISI 1045 steel using Taguchi design and ANOVA , 2009, Prod. Eng..

[60]  Mohan Kumar Pradhan,et al.  Modeling and optimization of electrical discharge machining process using RSM: A review , 2017 .

[61]  Habibollah Haron,et al.  Application of GA to optimize cutting conditions for minimizing surface roughness in end milling machining process , 2010, Expert Syst. Appl..

[62]  I. Hanafi,et al.  Optimization of cutting conditions for sustainable machining of PEEK-CF30 using TiN tools , 2012 .

[63]  N Baskar.,et al.  Modeling and Optimization of Face Milling Operation Based on Response Surface Methodology and Genetic Algorithm , 2013 .

[64]  J. McCall,et al.  Genetic algorithms for modelling and optimisation , 2005 .

[65]  Jun Zhao,et al.  Cutting Force and Tool Wear in Face Milling of Hardened Steel , 2012 .

[66]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[67]  K. Kadirgama,et al.  Response Ant Colony Optimization of End Milling Surface Roughness , 2010, Sensors.

[68]  I. Y. Kim,et al.  Adaptive weighted-sum method for bi-objective optimization: Pareto front generation , 2005 .