Observation of Nonlinear Differential-Algebraic Systems With Unknown Inputs

A method to carry out the state estimation is proposed for a class of nonlinear systems with unknown inputs whose dynamics is governed by differential-algebraic equations (DAE). We achieve, under suitable conditions, to replace the original DAE for a system with differential equations only by using a zeroing manifold algorithm inducing a state space dimension reduction. Observability conditions can be checked using the original system parameters. The state estimation is done using a sliding mode high order differentiator.

[1]  Daniel W. C. Ho,et al.  Full-order and reduced-order observers for Lipschitz descriptor systems: the unified LMI approach , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[2]  G. Besançon An Overview on Observer Tools for Nonlinear Systems , 2007 .

[3]  Leonid Fridman,et al.  Output feedback design for exact state stability of flat nonlinear systems , 2010, 2010 11th International Workshop on Variable Structure Systems (VSS).

[4]  Arie Levant,et al.  Higher-order sliding modes, differentiation and output-feedback control , 2003 .

[5]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[6]  Eduardo D. Sontag,et al.  I/O equations for nonlinear systems and observation spaces , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[7]  W. Terrell Observability of nonlinear differential algebraic systems , 1997 .

[8]  M. Fliess,et al.  Nonlinear observability, identifiability, and persistent trajectories , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[9]  H. Hammouri,et al.  A High Gain Observer for a Class of Implicit Systems , 2000, Proceedings of the 44th IEEE Conference on Decision and Control.

[10]  Mohamed Darouach,et al.  Observers for a Class of Nonlinear Singular Systems , 2008, IEEE Transactions on Automatic Control.

[11]  Jerrold E. Marsden,et al.  Foundations of Mechanics: 2nd Edition , 1980 .

[12]  Cédric Join,et al.  Numerical differentiation with annihilators in noisy environment , 2009, Numerical Algorithms.

[13]  Alberto Isidori,et al.  Nonlinear control systems: an introduction (2nd ed.) , 1989 .

[14]  Driss Boutat,et al.  An observation algorithm for nonlinear systems with unknown inputs , 2009, Autom..

[15]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[16]  A. Isidori Nonlinear Control Systems , 1985 .

[17]  Wilfrid Perruquetti,et al.  A Global High-Gain Finite-Time Observer , 2010, IEEE Transactions on Automatic Control.

[18]  S. Campbell Singular systems of differential equations II , 1980 .

[19]  Alexander S. Poznyak,et al.  Unknown Input and State Estimation for Unobservable Systems , 2009, SIAM J. Control. Optim..

[20]  Driss Boutat,et al.  Observers design for a class of nonlinear singular systems , 2011, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[21]  S. Campbell Singular Systems of Differential Equations , 1980 .

[22]  Mohamed Darouach,et al.  H∞ observers design for a class of nonlinear singular systems , 2011, Autom..

[23]  Volker Mehrmann,et al.  Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .

[24]  Erik Frisk,et al.  An observer for non-linear differential-algebraic systems , 2006, Autom..