Gaps in the essential spectrum of periodic elastic waveguides

Examples of periodic elastic waveguides are constructed, the essential spectrum of which has a gap, i.e. an open interval in the positive real semiaxis intersecting with the discrete spectrum only. The gap is detected with the help of an inequality of Korn's type and the max-min principle for eigenvalues of self-adjoint positive operators. Under a certain symmetry assumption, it is demonstrated that the first band of the essential spectrum can include eigenvalues in the point spectrum.

[1]  D. V. Evans,et al.  Existence theorems for trapped modes , 1994, Journal of Fluid Mechanics.

[2]  Alexander Figotin,et al.  Band-Gap Structure of Spectra of Periodic Dielectric and Acoustic Media. I. Scalar Model , 1996, SIAM J. Appl. Math..

[3]  Gap detection in the spectrum of an elastic periodic waveguide with a free surface , 2009 .

[4]  S. Nazarov Gap in the essential spectrum of an elliptic formally self-adjoint system of differential equations , 2010 .

[5]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[6]  E. Green Spectral Theory of Laplace–Beltrami Operators with Periodic Metrics , 1997 .

[7]  M. Kreĭn,et al.  Introduction to the theory of linear nonselfadjoint operators , 1969 .

[8]  L. Friedlander ON THE DENSITY OF STATES OF PERIODIC MEDIA IN THE LARGE COUPLING LIMIT , 2002 .

[9]  Сергей Александрович Назаров,et al.  Полиномиальное свойство самосопряженных эллиптических краевых задач и алгебраическое описание их атрибутов@@@The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes , 1999 .

[10]  M. Lobo,et al.  Local problems for vibrating systems with concentrated masses: a review , 2003 .

[11]  W. Schlag,et al.  Energy Growth in Schrödinger's Equation with Markovian Forcing , 2003 .

[12]  E. Sanchez-Palencia,et al.  Asymptotic and spectral properties of a class of singular-stiff problems , 1992 .

[13]  H. Beckert,et al.  J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .

[14]  F. Ursell,et al.  Mathematical aspects of trapping modes in the theory of surface waves , 1987, Journal of Fluid Mechanics.

[15]  E. S. Palencia,et al.  Vibration and Coupling of Continuous Systems , 1989 .

[16]  N. Filonov Gaps in the Spectrum of the Maxwell Operator with Periodic Coefficients , 2003 .

[17]  S. Nazarov,et al.  Asymptotically sharp uniform estimates in a scalar spectral stiff problem , 2003 .

[18]  Asymptotic expansions of solutions of ordinary differential equations in Hilbert space , 1967 .

[19]  O. Ladyzhenskaya The Boundary Value Problems of Mathematical Physics , 1985 .

[20]  S. Nazarov Properties of Spectra of Boundary Value Problems in Cylindrical and Quasicylindrical Domains , 2009 .

[21]  S. Nazarov,et al.  Asymptotics for the spectrum of the Wentzell problem with a small parameter and other related stiff problems , 2006 .

[22]  R. Hempel,et al.  Spectral properties of periodic media in the large coupling limit , 1999 .

[23]  C. M. Linton,et al.  Embedded trapped modes in water waves and acoustics , 2007 .

[24]  S. Nazarov,et al.  Eigen-oscillations of contrasting non-homogeneous elastic bodies , 2005 .

[25]  Carmen Perugia,et al.  A gap in the essential spectrum of a cylindrical waveguide with a periodic aperturbation of the surface , 2010 .

[26]  B. Plamenevskii,et al.  Elliptic Problems in Domains with Piecewise Smooth Boundaries , 1994 .

[27]  T. Weidl,et al.  Edge resonance in an elastic semi-strip , 1998 .