Connectivity and Giant Component of Stochastic Kronecker Graphs

Stochastic Kronecker graphs are a model for complex networks where each edge is present independently according the Kronecker (tensor) product of a fixed matrix k-by-k matrix P with entries in [0,1]. We develop a novel correspondence between the adjacencies in a general stochastic Kronecker graph and the action of a fixed Markov chain. Using this correspondence we are able to generalize the arguments of Horn and Radcliffe on the emergence of the giant component from the case where k = 2 to arbitrary k. We are also able to use this correspondence to completely analyze the connectivity of a general stochastic Kronecker graph.

[1]  Fan Chung Graham,et al.  The Giant Component in a Random Subgraph of a Given Graph , 2009, WAW.

[2]  Svante Janson,et al.  Phase transitions for modified Erdős–Rényi processes , 2010, 1005.4494.

[3]  Yuval Peres,et al.  Anatomy of a young giant component in the random graph , 2009, Random Struct. Algorithms.

[4]  Leon W. Cohen,et al.  Conference Board of the Mathematical Sciences , 1963 .

[5]  Andrei Z. Broder,et al.  Workshop on Algorithms and Models for the Web Graph , 2007, WAW.

[6]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[7]  A. Rbnyi ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .

[8]  David F. Gleich,et al.  Algorithms and Models for the Web Graph , 2014, Lecture Notes in Computer Science.

[9]  Christos Faloutsos,et al.  Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication , 2005, PKDD.

[10]  Tomasz Luczak,et al.  Component Behavior Near the Critical Point of the Random Graph Process , 1990, Random Struct. Algorithms.

[11]  Alan M. Frieze,et al.  The emergence of a giant component in random subgraphs of pseudo‐random graphs , 2004, Random Struct. Algorithms.

[12]  P. Erdos,et al.  The Giant Component : The Golden Anniversary , 2009 .

[13]  Mark Jerrum,et al.  Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains , 1987, WG.

[14]  Tomasz Łuczak Component behavior near the critical point of the random graph process , 1990 .

[15]  Paul Horn,et al.  Giant components in Kronecker graphs , 2012, Random Struct. Algorithms.

[16]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[17]  Mary Radcliffe,et al.  The spectra of multiplicative attribute graphs , 2014 .

[18]  Jure Leskovec,et al.  Multiplicative Attribute Graph Model of Real-World Networks , 2010, Internet Math..

[19]  Fan Chung Graham,et al.  Percolation in General Graphs , 2009, Internet Math..

[20]  Béla Bollobás,et al.  Asymptotic normality of the size of the giant component via a random walk , 2012, J. Comb. Theory, Ser. B.

[21]  Béla Bollobás,et al.  The Diameter of Random Graphs , 1981 .

[22]  F. Chung,et al.  Connected Components in Random Graphs with Given Expected Degree Sequences , 2002 .

[23]  B. Bollobás The evolution of random graphs , 1984 .

[24]  Fan Chung Graham,et al.  On the Spectra of General Random Graphs , 2011, Electron. J. Comb..

[25]  Christos Faloutsos,et al.  Scalable modeling of real graphs using Kronecker multiplication , 2007, ICML '07.

[26]  Béla Bollobás,et al.  A Simple Branching Process Approach to the Phase Transition in Gn, p , 2012, Electron. J. Comb..