Chemically sensitive field-effect transistors.

Sometimes unjustified, but nonetheless ever present need for more information continues to stimulate the development of new sensors and detectors. One of the more recent additions to the armory of these devices is the chemically sensitive field effect transistor (chemfet). It was born in the early seventies out of two very successful technologies: solid state integrated circuits and ion-selective electrodes (ise). It is still in its infancy but already out of the teething stage and with a very bright prospect ahead.

[1]  J. Ruzicka,et al.  Selectrode—the universal ion-selective electrode : Part VII. A valinomycin-based potassium electrode with nonporous polymer membrane and solid-state inner reference system , 1973 .

[2]  Masamichi Fujihira,et al.  Chemically modified parylene gate field effect transistors , 1980 .

[3]  A. S. Grove,et al.  Electron and hole mobilities in inversion layers on thermally oxidized silicon surfaces , 1965 .

[4]  G. Brouwer Control of the surface potential of germanium and electromotive force against calomel with the aid of a variable pH electrolyte containing hydrogen peroxyde , 1966 .

[5]  C. Svensson,et al.  A hydrogen-sensitive Pd-gate MOS transistor , 1975 .

[6]  R. Kelly Microelectronic approaches to solid state ion selective electrodes , 1977 .

[7]  R. J. Hunter,et al.  The oxide-solution interface , 1974 .

[8]  A. G. Revesz,et al.  On the mechanism of the ion sensitive field effect transistor , 1977 .

[9]  K. Wise,et al.  An Integrated Field-Effect Electrode for Biopotential Recording , 1974 .

[10]  R. J. Huber,et al.  A study of insulator materials used in ISFET gates , 1978 .

[11]  P Bergveld,et al.  Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. , 1972, IEEE transactions on bio-medical engineering.

[12]  A. S. Grove,et al.  Investigation of thermally oxidised silicon surfaces using metal-oxide-semiconductor structures , 1965 .

[13]  Curtis C. Johnson,et al.  Potassium ion-sensitive field effect transistor , 1975 .

[14]  Curtis C. Johnson,et al.  Ion-selective field effect transistors with polymeric membranes , 1978 .

[15]  Ingemar Lundström,et al.  Hydrogen in smoke detected by the Pd‐gate field‐effect transistor , 1976 .

[16]  A. S. Grove,et al.  Temperature dependence of MOS transistor characteristics below saturation , 1966 .

[17]  Ingemar Lundström,et al.  A hydrogen−sensitive MOS field−effect transistor , 1975 .

[18]  Jiri Janata,et al.  Field effect transistors sensitive to sodium and ammonium ions , 1981 .

[19]  K. Mosbach,et al.  Covalent coupling of pullulanase to an acrylic copolymer using a water soluble carbodi‐imide , 1972, Biotechnology and bioengineering.

[20]  E. Pungor Theory and Application of Anion , 1967 .

[21]  P. Augustus,et al.  The Detection of Silicon‐Oxynitride Layers on the Surfaces of Silicon‐Nitride Films by Auger Electron Emission , 1972 .

[22]  F. Secco d' Aragona,et al.  Dislocation Etch for (100) Planes in Silicon , 1972 .

[23]  P. Vanýsek,et al.  Electrolysis with electrolyte dropping electrode: II. Basic properties of the system , 1977 .

[24]  Richard P. Buck,et al.  Electroanalytical Chemistry of Membranes , 1975 .

[25]  G. Rechnitz,et al.  Automated protein determination with ion-selective membrane electrodes. , 1974, Analytical chemistry.

[26]  A. S. Grove Physics and Technology of Semiconductor Devices , 1967 .

[27]  J. Schenck A transistor method for measuring changes in double layer potentials , 1977 .

[28]  K. Cammann Exchange kinetics at potassium-selective liquid membrane electrodes , 1978 .

[29]  R. Cobbold,et al.  Basic properties of the electrolyte—SiO2—Si system: Physical and theoretical aspects , 1979, IEEE Transactions on Electron Devices.

[30]  P. Bergveld,et al.  The ion-sensitive field effect transistor in rapid acid-base titrations , 1979 .

[31]  R. J. Huber,et al.  Transient Phenomena in Ion Sensitive Field Effect Transistors , 1980 .

[32]  P Bergveld,et al.  Development of an ion-sensitive solid-state device for neurophysiological measurements. , 1970, IEEE transactions on bio-medical engineering.

[33]  E. Arquilla,et al.  Resistance Changes in Lipid Bilayers: Immunological Applications , 1968, Science.

[34]  J. A. Aboaf,et al.  Deposition and Properties of Aluminum Oxide Obtained by Pyrolytic Decomposition of an Aluminum Alkoxide , 1967 .

[35]  Erno Pungor,et al.  Response time curves of ion-selective electrodes , 1976 .

[36]  J. Zemel,et al.  Valinomycin-doped photoresist layers for potassium ion sensing , 1980 .

[37]  I. Lundström,et al.  Chemical reactions on palladium surfaces studied with Pd-MOS structures , 1977 .

[38]  W. S. Jordan,et al.  In vivo continuous monitoring of ionized calcium in dogs using ion sensitive field effect transistors. , 1981, Critical care medicine.

[39]  M. Aizawa,et al.  Immunoresponsive membrane : I. Membrane potential change associated with an immunochemical reaction between membrane-bound antigen and free antibody , 1977 .

[40]  Akira Fujishima,et al.  POTENTIAL VARIATION AT THE SEMICONDUCTOR-ELECTROLYTE INTERFACE THROUGH A CHANGE IN pH OF THE SOLUTION , 1974 .

[41]  J. Zemel,et al.  Physical mechanisms for chemically sensitive semiconductor devices , 1978, Nature.

[42]  H. Allcock Poly(organophosphazenes)--unusual new high polymers. , 1977 .

[43]  H. Brown,et al.  A calcium-sensitive microelectrode suitable for intracellular measurement of calcium(II) activity , 1976 .

[44]  R. Parsons,et al.  The diffuse double layer in mixed electrolytes , 1961 .

[45]  M. Esashi,et al.  Integrated Micro Multi Ion Sensor Using Field Effect of Semiconductor , 1978, IEEE Transactions on Biomedical Engineering.

[46]  D. Wobschall,et al.  Step conductance increases in bilayer membranes induced by antibody-antigen-complement action. , 1975, Biochimica et biophysica acta.

[47]  T. Tadros,et al.  Adsorption of potential-determining ions at the silica-aqueous electrolyte interface and the role of some cations , 1968 .

[48]  M. Meyerhoff,et al.  Antibody binding measurements with hapten-selective membrane electrodes. , 1977, Science.

[49]  O. H. Leblanc,et al.  Polymer membrane sensors for continuous intravascular monitoring of blood pH. , 1976, Journal of applied physiology.

[50]  J. Zemel Chemically sensitive devices , 1979 .

[51]  J. Janata,et al.  A field effect transistor as a solid-state reference electrode , 1978 .

[52]  J. Janata,et al.  Ion-selective field effect transistors with heterogeneous membranes , 1979 .

[53]  M. S. Shivaraman Detection of H2S with Pd‐gate MOS field‐effect transistors , 1976 .

[54]  W. E. Morf,et al.  Transport properties of neutral carrier on selective membranes , 1976 .

[55]  J. Zemel Ion-Sensitive Field Effect Transistors and Related Devices , 1975 .

[56]  W. Spicer,et al.  A study of the chemical composition of MOS and MNOS structures by auger electron spectroscopy , 1976 .

[57]  W. Kenan,et al.  Field effect potentiometric sensors , 1977 .

[58]  F. A. Lewis,et al.  The Palladium-Hydrogen System , 1967, Platinum Metals Review.

[59]  G. J. Moody,et al.  An investigation of the optimum composition of poly(vinyl chloride) matrix membranes used for selective calcium-sensitive electrodes , 1972 .

[60]  J. Janata,et al.  Field effect transistor sensitive to penicillin , 1980 .

[61]  G. J. Moody,et al.  Sweat testing for cystic fibrosis: characteristics of a combination chloride ion-selective electrode. , 1977, Clinica chimica acta; international journal of clinical chemistry.

[62]  Garry A. Rechnitz,et al.  Preparation and properties of an antibody-selective membrane electrode , 1981 .

[63]  I. Lundström,et al.  Hydrogen induced interfacial polarization at PdSiO2 interfaces , 1976 .

[64]  J. Janata,et al.  Ion-selective electrode for intracellular potassium measurements. , 1980, Analytical chemistry.

[65]  T. Fjeldly,et al.  Fluoride Electrodes with Reversible Solid‐State Contacts , 1980 .