A generalized LPV system analysis and control synthesis framework

In this paper, a new approach for linear parameter-varying (LPV) system analysis and control synthesis is proposed. This unified framework combines two seemingly diversified methods in systematic gain-scheduling, LPV control theory, and extends the applicability of full block S -procedure to a general class of LPV systems. An example is used to demonstrate the proposed general LPV design approach, and to show its relative merits compared to other systematic gain-scheduling control techniques.

[1]  Tetsuya Iwasaki,et al.  All controllers for the general H∞ control problem: LMI existence conditions and state space formulas , 1994, Autom..

[2]  Fen Wu,et al.  Induced L2‐norm control for LPV systems with bounded parameter variation rates , 1996 .

[3]  C. Scherer A full block S-procedure with applications , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[4]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[5]  S. Bittanti,et al.  Affine Parameter-Dependent Lyapunov Functions and Real Parametric Uncertainty , 1996 .

[6]  Pascal Gahinet,et al.  Explicit controller formulas for LMI-based H∞ synthesis , 1996, Autom..

[7]  Pierre Apkarian,et al.  Advanced gain-scheduling techniques for uncertain systems , 1998, IEEE Trans. Control. Syst. Technol..

[8]  Michael Athans,et al.  Guaranteed properties of gain scheduled control for linear parameter-varying plants , 1991, Autom..

[9]  A. Packard,et al.  Robust performance of linear parametrically varying systems using parametrically-dependent linear feedback , 1994 .

[10]  Wilson J. Rugh,et al.  Analytical Framework for Gain Scheduling , 1990, 1990 American Control Conference.

[11]  M. Athans,et al.  Gain Scheduling: Potential Hazards and Possible Remedies , 1992, 1991 American Control Conference.

[12]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..

[13]  Lawton H. Lee,et al.  Control of linear parameter-varying systems using dynamic parameter measurement , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[14]  Athanasios Sideris,et al.  H ∞ control with parametric Lyapunov functions , 1997 .

[15]  S. Hara,et al.  Well-posedness of feedback systems: insights into exact robustness analysis and approximate computations , 1998, IEEE Trans. Autom. Control..

[16]  A. Packard Gain scheduling via linear fractional transformations , 1994 .

[17]  Gregory Becker Additional Results on Parameter-Dependent Controllers for LPV Systems , 1996 .

[18]  G. Scorletti,et al.  Improved linear matrix inequality conditions for gain scheduling , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[19]  A. Rantzer,et al.  System analysis via integral quadratic constraints , 1997, IEEE Trans. Autom. Control..

[20]  Carsten W. Scherer,et al.  LPV control and full block multipliers , 2001, Autom..

[21]  Anders Helmersson,et al.  Methods for robust gain scheduling , 1995 .