Improved risk-stratification for posterior fossa ependymoma of childhood considering clinical, histological and genetic features – a retrospective analysis of the HIT ependymoma trial cohort

[1]  T. Zhou,et al.  Conformal Radiation Therapy for Pediatric Ependymoma, Chemotherapy for Incompletely Resected Ependymoma, and Observation for Completely Resected, Supratentorial Ependymoma. , 2019, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[2]  C. Sommer,et al.  Childhood supratentorial ependymomas with YAP1‐MAMLD1 fusion: an entity with characteristic clinical, radiological, cytogenetic and histopathological features , 2018, Brain pathology.

[3]  David T. W. Jones,et al.  Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas , 2018, Acta Neuropathologica.

[4]  D. Johnston,et al.  Immunohistochemical analysis of H3K27me3 demonstrates global reduction in group-A childhood posterior fossa ependymoma and is a powerful predictor of outcome , 2017, Acta Neuropathologica.

[5]  P. Ferroli,et al.  Final results of the second prospective AIEOP protocol for pediatric intracranial ependymoma. , 2016, Neuro-oncology.

[6]  L. Klein-Hitpass,et al.  Supratentorial ependymomas of childhood carry C11orf95–RELA fusions leading to pathological activation of the NF-κB signaling pathway , 2014, Acta Neuropathologica.

[7]  Gary D Bader,et al.  Epigenomic alterations define lethal CIMP-positive ependymomas of infancy , 2014, Nature.

[8]  M. Cairns,et al.  Gene set enrichment analysis of RNA-Seq data: integrating differential expression and splicing , 2013, BMC Bioinformatics.

[9]  Giovanni Parmigiani,et al.  Integrating diverse genomic data using gene sets , 2011, Genome Biology.

[10]  Gary D Bader,et al.  Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. , 2011, Cancer cell.

[11]  Richard G Grundy,et al.  Histopathological grading of pediatric ependymoma: reproducibility and clinical relevance in European trial cohorts , 2011, Journal of Negative Results in BioMedicine.

[12]  P. Lichter,et al.  Molecular staging of intracranial ependymoma in children and adults. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[13]  P. Spellman,et al.  High quality copy number and genotype data from FFPE samples using Molecular Inversion Probe (MIP) microarrays , 2009, BMC Medical Genomics.

[14]  T. Zhou,et al.  The prognostic value of histological grading of posterior fossa ependymomas in children: a Children's Oncology Group study and a review of prognostic factors , 2008, Modern Pathology.

[15]  E. Lander,et al.  Assessing the significance of chromosomal aberrations in cancer: Methodology and application to glioma , 2007, Proceedings of the National Academy of Sciences.

[16]  James Ireland,et al.  Analysis of molecular inversion probe performance for allele copy number determination , 2007, Genome Biology.

[17]  B. Scheithauer,et al.  The 2007 WHO Classification of Tumours of the Central Nervous System , 2007, Acta Neuropathologica.

[18]  J. Mesirov,et al.  From the Cover: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005 .

[19]  Amar Gajjar,et al.  Radial glia cells are candidate stem cells of ependymoma. , 2005, Cancer cell.

[20]  D. Ellison,et al.  Genomic imbalances in pediatric intracranial ependymomas define clinically relevant groups. , 2002, The American journal of pathology.

[21]  R. Allibone,et al.  Genetic abnormalities detected in ependymomas by comparative genomic hybridisation , 2002, British Journal of Cancer.

[22]  N. Shcherbak Apolipoprotein E gene polymorphism is not a strong risk factor for diabetic nephropathy and retinopathy in Type I diabetes: case-control study , 2001, BMC Medical Genetics.

[23]  D. Figarella-Branger,et al.  Prognostic factors in intracranial ependymomas in children. , 2000, Journal of neurosurgery.