Production of GPCR and GPCR complexes for structure determination.

Since the first high-resolution structure of the beta 2 adrenergic receptor (b2AR) in 2007, we have seen a growing number of G-protein-coupled receptor (GPCR) structures coming to the repertory, providing a significant progress in our understanding of the structural basis of their function. This has been achieved by the interdisciplinary collaborative work between scientists with various expertise and the development of new methodologies as well as combining and optimizing existing techniques.

[1]  Michel Bouvier,et al.  Restructuring G-Protein- Coupled Receptor Activation , 2012, Cell.

[2]  H. Weinstein,et al.  Why GPCRs behave differently in cubic and lamellar lipidic mesophases , 2012, Journal of the American Chemical Society.

[3]  Xavier Deupi,et al.  Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II , 2011, Proceedings of the National Academy of Sciences.

[4]  W. Tanner,et al.  Specific lipid requirements of membrane proteins--a putative bottleneck in heterologous expression. , 2003, Biochimica et biophysica acta.

[5]  Christopher G Tate,et al.  A crystal clear solution for determining G-protein-coupled receptor structures. , 2012, Trends in biochemical sciences.

[6]  H. Schiöth,et al.  The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. , 2003, Molecular pharmacology.

[7]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[8]  Aashish Manglik,et al.  Structure of the δ-opioid receptor bound to naltrindole , 2012, Nature.

[9]  A. Plückthun,et al.  Maximizing detergent stability and functional expression of a GPCR by exhaustive recombination and evolution. , 2012, Journal of molecular biology.

[10]  D. Veprintsev,et al.  Insights into congenital stationary night blindness based on the structure of G90D rhodopsin , 2013, EMBO reports.

[11]  S. Opella,et al.  Structure of the Chemokine Receptor CXCR1 in Phospholipid Bilayers , 2012, Nature.

[12]  A. Engel,et al.  Atomic-force microscopy: Rhodopsin dimers in native disc membranes , 2003, Nature.

[13]  R. Abagyan,et al.  Structures of the CXCR4 Chemokine GPCR with Small-Molecule and Cyclic Peptide Antagonists , 2010, Science.

[14]  Brian K. Kobilka,et al.  N-Terminal T4 Lysozyme Fusion Facilitates Crystallization of a G Protein Coupled Receptor , 2012, PloS one.

[15]  Martin Heck,et al.  Monomeric G protein-coupled receptor rhodopsin in solution activates its G protein transducin at the diffusion limit , 2007, Proceedings of the National Academy of Sciences.

[16]  A. Engel,et al.  The rhodopsin-transducin complex houses two distinct rhodopsin molecules. , 2013, Journal of structural biology.

[17]  Philip J. Reeves,et al.  Structure and function in rhodopsin: A tetracycline-inducible system in stable mammalian cell lines for high-level expression of opsin mutants , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[18]  R. Stevens,et al.  Structure of an Agonist-Bound Human A2A Adenosine Receptor , 2011, Science.

[19]  S. Iwata,et al.  G protein-coupled receptor inactivation by an allosteric inverse-agonist antibody , 2011, Nature.

[20]  A. Hopkins,et al.  The druggable genome , 2002, Nature Reviews Drug Discovery.

[21]  Gebhard F. X. Schertler,et al.  Structure of a β1-adrenergic G-protein-coupled receptor , 2008, Nature.

[22]  K. Palczewski,et al.  Rhodopsin-transducin heteropentamer: three-dimensional structure and biochemical characterization. , 2011, Journal of structural biology.

[23]  K. Palczewski,et al.  Phospholipids are needed for the proper formation, stability, and function of the photoactivated rhodopsin-transducin complex. , 2009, Biochemistry.

[24]  A. Engel,et al.  Isolation and functional characterization of a stable complex between photoactivated rhodopsin and the G protein, transducin , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[25]  M. Burghammer,et al.  Crystal structure of the human β2 adrenergic G-protein-coupled receptor , 2007, Nature.

[26]  Christopher G. Tate,et al.  The structural basis for agonist and partial agonist action on a β1-adrenergic receptor , 2010, Nature.

[27]  Albert C. Pan,et al.  Structure and Dynamics of the M3 Muscarinic Acetylcholine Receptor , 2012, Nature.

[28]  Christopher G. Tate,et al.  Crystal Structures of a Stabilized β1-Adrenoceptor Bound to the Biased Agonists Bucindolol and Carvedilol , 2012, Structure.

[29]  J. Shiloach,et al.  Structure of the agonist-bound neurotensin receptor , 2012, Nature.

[30]  L. Pardo,et al.  Crystal structure of the μ-opioid receptor bound to a morphinan antagonist , 2012, Nature.

[31]  Cheng Zhang,et al.  High-resolution Crystal Structure of Human Protease-activated Receptor 1 Bound to the Antagonist Vorapaxar Hhs Public Access , 2022 .

[32]  G. Heijne,et al.  GFP-based optimization scheme for the overexpression and purification of eukaryotic membrane proteins in Saccharomyces cerevisiae , 2008, Nature Protocols.

[33]  B. Kobilka,et al.  Energy landscapes as a tool to integrate GPCR structure, dynamics, and function. , 2010, Physiology.

[34]  Jonathan A. Javitch,et al.  Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective Antagonist , 2010, Science.

[35]  Cheng Zhang,et al.  Structure and Function of an Irreversible Agonist-β2 Adrenoceptor complex , 2010, Nature.

[36]  R. Stevens,et al.  LCP-Tm: an assay to measure and understand stability of membrane proteins in a membrane environment. , 2010, Biophysical journal.

[37]  R. Stevens,et al.  The 2.6 Angstrom Crystal Structure of a Human A2A Adenosine Receptor Bound to an Antagonist , 2008, Science.

[38]  A. Desmyter,et al.  Structural genomics on membrane proteins: comparison of more than 100 GPCRs in 3 expression systems , 2007, Journal of Structural and Functional Genomics.

[39]  Gebhard F. X. Schertler,et al.  Arrangement of rhodopsin transmembrane α-helices , 1997, Nature.

[40]  Tong Liu,et al.  Structural flexibility of the Gαs α-helical domain in the β2-adrenoceptor Gs complex , 2011, Proceedings of the National Academy of Sciences.

[41]  R. Stroud,et al.  Efficient expression screening of human membrane proteins in transiently transfected Human Embryonic Kidney 293S cells. , 2011, Methods.

[42]  R. Stevens,et al.  High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein–Coupled Receptor , 2007, Science.

[43]  Joshua M. Kunken,et al.  Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. , 2012, Structure.

[44]  R. Stevens,et al.  GPCR Engineering Yields High-Resolution Structural Insights into β2-Adrenergic Receptor Function , 2007, Science.

[45]  Oliver P. Ernst,et al.  Crystal structure of metarhodopsin II , 2011, Nature.

[46]  M. Caffrey,et al.  Crystallizing Membrane Proteins in Lipidic Mesophases. A Host Lipid Screen. , 2011, Crystal growth & design.

[47]  Jianyun Huang,et al.  Crystal Structure of Oligomeric β1-Adrenergic G Protein- Coupled Receptors in Ligand-Free Basal State , 2013, Nature Structural &Molecular Biology.

[48]  Martin Caffrey,et al.  Membrane protein structure determination using crystallography and lipidic mesophases: recent advances and successes. , 2012, Biochemistry.

[49]  Gebhard F. X. Schertler,et al.  The structural basis of agonist-induced activation in constitutively active rhodopsin , 2011, Nature.

[50]  S. Rasmussen,et al.  Structure of a nanobody-stabilized active state of the β2 adrenoceptor , 2010, Nature.

[51]  H. Khorana,et al.  Opsin is present as dimers in COS1 cells: identification of amino acids at the dimeric interface. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Yoko Shibata,et al.  Thermostabilisation of the neurotensin receptor NTS1 , 2009, Journal of molecular biology.

[53]  Oliver P. Ernst,et al.  Crystal structure of opsin in its G-protein-interacting conformation , 2008, Nature.

[54]  R. Stroud,et al.  Overexpressing human membrane proteins in stably transfected and clonal human embryonic kidney 293S cells , 2012, Nature Protocols.

[55]  Ruben Abagyan,et al.  Structure of the human histamine H1 receptor complex with doxepin , 2011, Nature.

[56]  D. Oprian,et al.  Transducin Activation by Nanoscale Lipid Bilayers Containing One and Two Rhodopsins* , 2007, Journal of Biological Chemistry.

[57]  Bryan L. Roth,et al.  Structure of the Nociceptin/Orphanin FQ Receptor in Complex with a Peptide Mimetic , 2012, Nature.

[58]  Brian K. Kobilka,et al.  Structural Instability of a Constitutively Active G Protein-coupled Receptor , 1997, The Journal of Biological Chemistry.

[59]  Bryan L. Roth,et al.  Structure of the human kappa opioid receptor in complex with JDTic , 2012, Nature.

[60]  C. Tate,et al.  Thermostabilisation of an Agonist-Bound Conformation of the Human Adenosine A2A Receptor , 2011, Journal of molecular biology.

[61]  S. Iwata,et al.  Platform for the rapid construction and evaluation of GPCRs for crystallography in Saccharomyces cerevisiae , 2012, Microbial Cell Factories.

[62]  D. Oprian,et al.  Preparation of an activated rhodopsin/transducin complex using a constitutively active mutant of rhodopsin. , 2011, Biochemistry.

[63]  Eric Gouaux,et al.  Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. , 2006, Structure.

[64]  Virgil L. Woods,et al.  Conformational changes in the G protein Gs induced by the β2 adrenergic receptor , 2011, Nature.

[65]  Hugh Rosen,et al.  Crystal Structure of a Lipid G Protein–Coupled Receptor , 2012, Science.

[66]  R. Stevens,et al.  Development of an Automated High Throughput LCP-FRAP Assay to Guide Membrane Protein Crystallization in Lipid Mesophases. , 2011, Crystal growth & design.

[67]  Yoko Shibata,et al.  Conformational thermostabilization of the β1-adrenergic receptor in a detergent-resistant form , 2008, Proceedings of the National Academy of Sciences.

[68]  R. Stevens,et al.  Structural Basis for Allosteric Regulation of GPCRs by Sodium Ions , 2012, Science.

[69]  R. Stevens,et al.  Profiling of membrane protein variants in a baculovirus system by coupling cell-surface detection with small-scale parallel expression. , 2007, Protein expression and purification.

[70]  A. Kruse,et al.  Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist , 2011, Nature.

[71]  Patrick Scheerer,et al.  Crystal structure of the ligand-free G-protein-coupled receptor opsin , 2008, Nature.

[72]  S. Rasmussen,et al.  Crystal Structure of the β2Adrenergic Receptor-Gs protein complex , 2011, Nature.

[73]  A. Leslie,et al.  Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation , 2011, Nature.