A greedy algorithm for finding a large 2‐matching on a random cubic graph

A 2-matching of a graph $G$ is a spanning subgraph with maximum degree two. The size of a 2-matching $U$ is the number of edges in $U$ and this is at least $n-\k(U)$ where $n$ is the number of vertices of $G$ and $\k$ denotes the number of components. In this paper, we analyze the performance of a greedy algorithm \textsc{2greedy} for finding a large 2-matching on a random 3-regular graph. We prove that with high probability, the algorithm outputs a 2-matching $U$ with $\k(U) = \tilde{\Theta}\of{n^{1/5}}$.

[1]  Alan M. Frieze,et al.  Generating and Counting Hamilton Cycles in Random Regular Graphs , 1996, J. Algorithms.

[2]  Alan M. Frieze,et al.  Maximum matchings in sparse random graphs: Karp-Sipser revisited , 1998, Random Struct. Algorithms.

[3]  Alan M. Frieze,et al.  Analysis of a simple greedy matching algorithm on random cubic graphs , 1995, SODA '93.

[4]  Alan M. Frieze,et al.  A note on the random greedy triangle-packing algorithm , 2010, ArXiv.

[5]  Nicholas C. Wormald,et al.  Almost All Cubic Graphs Are Hamiltonian , 1992, Random Struct. Algorithms.

[6]  Nicholas C. Wormald,et al.  Almost All Regular Graphs Are Hamiltonian , 1994, Random Struct. Algorithms.

[7]  Tom Bohman,et al.  Hamilton cycles in 3-out , 2009 .

[8]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[9]  Alan M. Frieze,et al.  Finding hamilton cycles in sparse random graphs , 1987, J. Comb. Theory, Ser. B.

[10]  Alan M. Frieze,et al.  Karp–Sipser on Random Graphs with a Fixed Degree Sequence , 2011, Combinatorics, Probability and Computing.

[11]  R. Durrett Probability: Theory and Examples , 1993 .

[12]  Béla Bollobás,et al.  Edge disjoint Hamilton cycles in sparse random graphs of minimum degree at least k , 2000 .

[13]  T. Bohman The triangle-free process , 2008, 0806.4375.

[14]  D. Freedman On Tail Probabilities for Martingales , 1975 .

[15]  M. Sipser,et al.  Maximum matching in sparse random graphs , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[16]  Richard M. Karp,et al.  Maximum Matchings in Sparse Random Graphs , 1981, FOCS 1981.

[17]  Justin Salez,et al.  Weighted enumeration of spanning subgraphs in locally tree‐like graphs , 2013, Random Struct. Algorithms.

[18]  Alan M. Frieze,et al.  On a greedy 2‐matching algorithm and Hamilton cycles in random graphs with minimum degree at least three , 2011, Random Struct. Algorithms.

[19]  Marc Lelarge,et al.  A new approach to the orientation of random hypergraphs , 2012, SODA.