An RFX transcription factor regulates ciliogenesis in the closest living relatives of animals

[1]  D. Nicastro,et al.  Three-dimensional flagella structures from animals’ closest unicellular relatives, the Choanoflagellates , 2022, bioRxiv.

[2]  Koryu Kin,et al.  Evolution of a novel cell type in Dictyostelia required gene duplication of a cudA-like transcription factor , 2021, Current Biology.

[3]  Felipe A. Simão,et al.  BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes , 2021, Molecular biology and evolution.

[4]  P. Bork,et al.  Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation , 2021, Nucleic Acids Res..

[5]  Jacob L. Steenwyk,et al.  ClipKIT: A multiple sequence alignment trimming software for accurate phylogenomic inference , 2020, PLoS biology.

[6]  B. Durand,et al.  Interplay of RFX transcription factors 1, 2 and 3 in motile ciliogenesis , 2020, Nucleic acids research.

[7]  Jeremy G. Wideman,et al.  EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotes , 2020, bioRxiv.

[8]  Nicolas E. Buchler,et al.  Chytrid fungi , 2020, Current Biology.

[9]  Lillian K. Fritz-Laylin The evolution of animal cell motility , 2020, Current Biology.

[10]  David S. Booth,et al.  Genome editing enables reverse genetics of multicellular development in the choanoflagellate Salpingoeca rosetta , 2020, bioRxiv.

[11]  M. Gut,et al.  Reconstruction of protein domain evolution using single-cell amplified genomes of uncultured choanoflagellates sheds light on the origin of animals , 2019, Philosophical Transactions of the Royal Society B.

[12]  D. Mende,et al.  A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators , 2019, Proceedings of the National Academy of Sciences.

[13]  T. Stokke,et al.  A CEP104-CSPP1 Complex Is Required for Formation of Primary Cilia Competent in Hedgehog Signaling , 2019, Cell reports.

[14]  L. Fauci,et al.  Effects of cell morphology and attachment to a surface on the hydrodynamic performance of unicellular choanoflagellates , 2019, Journal of the Royal Society Interface.

[15]  G. Wagner,et al.  Stress‐Induced Evolutionary Innovation: A Mechanism for the Origin of Cell Types , 2018, BioEssays : news and reviews in molecular, cellular and developmental biology.

[16]  David S. Booth,et al.  Transfection of choanoflagellates illuminates their cell biology and the ancestry of animal septins , 2018, bioRxiv.

[17]  M. Eisen,et al.  Gene family innovation, conservation and loss on the animal stem lineage , 2018, eLife.

[18]  M. Delorenzi,et al.  The transcription factor Rfx7 limits metabolism of NK cells and promotes their maintenance and immunity , 2018, Nature Immunology.

[19]  O. Moskvin,et al.  Zebrafish Rfx4 controls dorsal and ventral midline formation in the neural tube , 2018, Developmental dynamics : an official publication of the American Association of Anatomists.

[20]  J. Kere,et al.  Characterization of the human RFX transcription factor family by regulatory and target gene analysis , 2018, BMC Genomics.

[21]  N. Krogan,et al.  Evolutionary Proteomics Uncovers Ancient Associations of Cilia with Signaling Pathways. , 2017, Developmental cell.

[22]  N. King,et al.  The Origin of Animal Multicellularity and Cell Differentiation. , 2017, Developmental cell.

[23]  A. Rokas,et al.  Embracing Uncertainty in Reconstructing Early Animal Evolution , 2017, Current Biology.

[24]  Thomas K. F. Wong,et al.  ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates , 2017, Nature Methods.

[25]  Geet Duggal,et al.  Salmon: fast and bias-aware quantification of transcript expression using dual-phase inference , 2017, Nature Methods.

[26]  D. Richter,et al.  A six-gene phylogeny provides new insights into choanoflagellate evolution. , 2017, Molecular phylogenetics and evolution.

[27]  Ian K Quigley,et al.  Rfx2 Stabilizes Foxj1 Binding at Chromatin Loops to Enable Multiciliated Cell Gene Expression , 2016, bioRxiv.

[28]  B. Durand,et al.  RFX2 Is a Major Transcriptional Regulator of Spermiogenesis , 2015, PLoS genetics.

[29]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[30]  Kate B. Cook,et al.  Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity , 2014, Cell.

[31]  N. King,et al.  Prey Capture and Phagocytosis in the Choanoflagellate Salpingoeca rosetta , 2014, PloS one.

[32]  B. Stefanovic,et al.  RFX7 is required for the formation of cilia in the neural tube , 2014, Mechanisms of Development.

[33]  Sudipto Roy,et al.  Switching on cilia: transcriptional networks regulating ciliogenesis , 2014, Development.

[34]  Matthew Fraser,et al.  InterProScan 5: genome-scale protein function classification , 2014, Bioinform..

[35]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[36]  E. Marcotte,et al.  Coordinated genomic control of ciliogenesis and cell movement by RFX2 , 2014, eLife.

[37]  Martha L. Bulyk,et al.  DNA-binding specificity changes in the evolution of forkhead transcription factors , 2013, Proceedings of the National Academy of Sciences.

[38]  R. Crystal,et al.  RFX3 Modulation of FOXJ1 regulation of cilia genes in the human airway epithelium , 2013, Respiratory Research.

[39]  Gabrielle Wheway,et al.  The SYSCILIA gold standard (SCGSv1) of known ciliary components and its applications within a systems biology consortium , 2013, Cilia.

[40]  B. Haas,et al.  Premetazoan genome evolution and the regulation of cell differentiation in the choanoflagellate Salpingoeca rosetta , 2013, Genome Biology.

[41]  Minh Anh Nguyen,et al.  Ultrafast Approximation for Phylogenetic Bootstrap , 2013, Molecular biology and evolution.

[42]  Atina G. Coté,et al.  Evaluation of methods for modeling transcription factor sequence specificity , 2013, Nature Biotechnology.

[43]  Juan M. Vaquerizas,et al.  DNA-Binding Specificities of Human Transcription Factors , 2013, Cell.

[44]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[45]  B. Schierwater,et al.  Evolutionarily Ancient Association of the FoxJ1 Transcription Factor with the Motile Ciliogenic Program , 2012, PLoS genetics.

[46]  Matthew W. Brown,et al.  The Revised Classification of Eukaryotes , 2012, The Journal of eukaryotic microbiology.

[47]  J. Clardy,et al.  A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals , 2012, eLife.

[48]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[49]  M. Ochs,et al.  Differential regulation of node formation, nodal ciliogenesis and cilia positioning by Noto and Foxj1 , 2012, Development.

[50]  Kriston L. McGary,et al.  RFX2 is broadly required for ciliogenesis during vertebrate development. , 2012, Developmental biology.

[51]  C. E. Larkins,et al.  Arl13b regulates ciliogenesis and the dynamic localization of Shh signaling proteins , 2011, Molecular biology of the cell.

[52]  N. King,et al.  Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta. , 2011, Developmental biology.

[53]  J. Pereira-Leal,et al.  Tracing the origins of centrioles, cilia, and flagella , 2011, The Journal of cell biology.

[54]  N. Friedman,et al.  Trinity : reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2016 .

[55]  H. Philippe,et al.  Resolving Difficult Phylogenetic Questions: Why More Sequences Are Not Enough , 2011, PLoS biology.

[56]  Timothy R. Hughes,et al.  Sequence specificity is obtained from the majority of modular C2H2 zinc-finger arrays , 2011, Nucleic acids research.

[57]  I. Drummond,et al.  Tubulin Tyrosine Ligase-like Genes ttll3 and ttll6 Maintain Zebrafish Cilia Structure and Motility* , 2011, The Journal of Biological Chemistry.

[58]  P. Swoboda,et al.  Regulatory Factor X (RFX)-mediated transcriptional rewiring of ciliary genes in animals , 2010, Proceedings of the National Academy of Sciences.

[59]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[60]  Nansheng Chen,et al.  Convergent evolution of RFX transcription factors and ciliary genes predated the origin of metazoans , 2010, BMC Evolutionary Biology.

[61]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[62]  Robert A. Bloodgood Sensory reception is an attribute of both primary cilia and motile cilia , 2010, Journal of Cell Science.

[63]  Hayley E. Bugeja,et al.  The RFX Protein RfxA Is an Essential Regulator of Growth and Morphogenesis in Penicillium marneffei , 2010, Eukaryotic Cell.

[64]  Olivier Arnaiz,et al.  Cildb: a knowledgebase for centrosomes and cilia , 2009, Database J. Biol. Databases Curation.

[65]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[66]  Youngshik Choe,et al.  The Rfx4 Transcription Factor Modulates Shh Signaling by Regional Control of Ciliogenesis , 2009, Science Signaling.

[67]  B. Durand,et al.  RFX3 governs growth and beating efficiency of motile cilia in mouse and controls the expression of genes involved in human ciliopathies. , 2009 .

[68]  Peter V. Troshin,et al.  The origin of Metazoa: a transition from temporal to spatial cell differentiation , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[69]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[70]  K. Iczkowski,et al.  Candida albicans RFX2 Encodes a DNA Binding Protein Involved in DNA Damage Responses, Morphogenesis, and Virulence , 2009, Eukaryotic Cell.

[71]  Christopher L. Warren,et al.  A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters. , 2008, Molecular cell.

[72]  Sudipto Roy,et al.  Foxj1 transcription factors are master regulators of the motile ciliogenic program , 2008, Nature Genetics.

[73]  J. C. Belmonte,et al.  The Forkhead protein, FoxJ1, specifies node-like cilia in Xenopus and Zebrafish embryos , 2008, Nature Genetics.

[74]  D. Arendt The evolution of cell types in animals: emerging principles from molecular studies , 2008, Nature Reviews Genetics.

[75]  David Q. Matus,et al.  Broad phylogenomic sampling improves resolution of the animal tree of life , 2008, Nature.

[76]  C. Nielsen Six major steps in animal evolution: are we derived sponge larvae? , 2008, Evolution & development.

[77]  Adrian Gherman,et al.  The ciliary proteome database: an integrated community resource for the genetic and functional dissection of cilia , 2006, Nature Genetics.

[78]  Gary Ruvkun,et al.  Analysis of xbx genes in C. elegans , 2005, Development.

[79]  N. King,et al.  The unicellular ancestry of animal development. , 2004, Developmental cell.

[80]  C. Ucla,et al.  The Transcription Factor RFX3 Directs Nodal Cilium Development and Left-Right Asymmetry Specification , 2004, Molecular and Cellular Biology.

[81]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[82]  Maurice Kernan,et al.  Drosophila Regulatory factor X is necessary for ciliated sensory neuron differentiation , 2002, Development.

[83]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[84]  J. Thomas,et al.  The RFX-type transcription factor DAF-19 regulates sensory neuron cilium formation in C. elegans. , 2000, Molecular cell.

[85]  Stephen K. Burley,et al.  Structure of the winged-helix protein hRFX1 reveals a new mode of DNA binding , 2000, Nature.

[86]  J. Chen,et al.  Mutation of the mouse hepatocyte nuclear factor/forkhead homologue 4 gene results in an absence of cilia and random left-right asymmetry. , 1998, The Journal of clinical investigation.

[87]  S. Elledge,et al.  The DNA Replication and Damage Checkpoint Pathways Induce Transcription by Inhibition of the Crt1 Repressor , 1998, Cell.

[88]  P. Bucher,et al.  A consensus motif in the RFX DNA binding domain and binding domain mutants with altered specificity , 1996, Molecular and cellular biology.

[89]  M. McLeod,et al.  The sak1+ gene of Schizosaccharomyces pombe encodes an RFX family DNA-binding protein that positively regulates cyclic AMP-dependent protein kinase-mediated exit from the mitotic cell cycle , 1995, Molecular and cellular biology.

[90]  P. Emery,et al.  Cooperative binding between factors RFX and X2bp to the X and X2 boxes of MHC class II promoters. , 1994, The Journal of biological chemistry.

[91]  W. Reith,et al.  MHC class II regulatory factor RFX has a novel DNA-binding domain and a functionally independent dimerization domain. , 1990, Genes & development.

[92]  G. Mackie Neuroid Conduction and the Evolution of Conducting Tissues , 1970, The Quarterly Review of Biology.

[93]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.

[94]  C. Brokaw Decreased adenosine triphosphatase acivity of flagella from a paralyzed mutant of Chlamydomonas moewusii. , 1960, Experimental cell research.

[95]  L. Buss,et al.  The evolution of individuality , 1987 .

[96]  L. Margulis Symbiosis in cell evolution: Life and its environment on the early earth , 1981 .