Improved High-temperature Fatigue Performance of Laser Directed Energy Deposited Ni-based Superalloy by Regulating the Heat Treatment

[1]  Z. Yue,et al.  Effect of thermal cycles on laser direct energy deposition repair performance of nickel-based superalloy: Microstructure and tensile properties , 2022, International Journal of Mechanical Sciences.

[2]  Patxi Fernandez-Zelaia,et al.  Effect of microstructure on fatigue crack propagation in additive manufactured nickel-based superalloy Haynes 282: an experiment and crystal plasticity study , 2022, Journal of Materials Science.

[3]  U. Ramamurty,et al.  Cascading of the as-built microstructure through heat treatment and its role on the tensile properties of laser powder bed fused Inconel 718 , 2021, Materialia.

[4]  Z. Yue,et al.  A Comprehensive Study of the Anisotropic Tensile Properties of Laser Additive Manufactured Ni-based Superalloy after Heat Treatment. , 2021, International Journal of Plasticity.

[5]  J. Moverare,et al.  High temperature mechanical integrity of selective laser melted alloy 718 evaluated by slow strain rate tests , 2021 .

[6]  Kangbo Yuan,et al.  Influence of heat treatments on plastic flow of laser deposited Inconel 718: Testing and microstructural based constitutive modeling , 2021 .

[7]  R. Srinivasan,et al.  Effects of post-processing route on fatigue performance of laser powder bed fusion Inconel 718 , 2020 .

[8]  N. Shamsaei,et al.  Fatigue behavior and microstructural evolution of additively manufactured Inconel 718 under cyclic loading at elevated temperature , 2020 .

[9]  Haoqing Li,et al.  The effect of energy density on texture and mechanical anisotropy in selective laser melted Inconel 718 , 2020 .

[10]  J. Lai,et al.  Epitaxial laser deposition of single crystal Ni-based superalloys: Repair of complex geometry , 2020 .

[11]  Nicholas C. Ferreri,et al.  Determining volume fractions of γ, γ′, γ″, δ, and MC-carbide phases in Inconel 718 as a function of its processing history using an advanced neutron diffraction procedure , 2020 .

[12]  A. Rezaei,et al.  Microstructural and mechanical anisotropy of selective laser melted IN718 superalloy at room and high temperatures using small punch test , 2020 .

[13]  Nicholas C. Ferreri,et al.  Experimental characterization and crystal plasticity modeling of anisotropy, tension-compression asymmetry, and texture evolution of additively manufactured Inconel 718 at room and elevated temperatures , 2020, International Journal of Plasticity.

[14]  Yu-hao Cao,et al.  Effect of the Solution Temperature on the Precipitates and Grain Evolution of IN718 Fabricated by Laser Additive Manufacturing , 2020, Materials.

[15]  V. Popovich,et al.  A review of mechanical properties of additively manufactured Inconel 718 , 2019 .

[16]  M. Enoki,et al.  Effect of crystallographic orientation and geometrical compatibility on fatigue crack initiation and propagation in rolled Ti-6Al-4V alloy , 2019, Acta Materialia.

[17]  Xin Lin,et al.  Effect of heat treatment on the microstructural evolution and mechanical properties of GH4099 additive-manufactured by directed energy deposition , 2019, Journal of Alloys and Compounds.

[18]  S. Kelly,et al.  Microstructure, fatigue, and impact toughness properties of additively manufactured nickel alloy 718 , 2019, Additive Manufacturing.

[19]  H. Li,et al.  Assessment of mechanical properties and fatigue performance of a selective laser melted nickel-base superalloy Inconel 718 , 2019, Materials Science and Engineering: A.

[20]  S. Matsuoka,et al.  Effect of defects on the fatigue limit of Ni‐based superalloy 718 with different grain sizes , 2019, Fatigue & Fracture of Engineering Materials & Structures.

[21]  Huihui Yang,et al.  Heat treatment of Inconel 718 produced by selective laser melting: Microstructure and mechanical properties , 2019, Materials Science and Engineering: A.

[22]  Peng Liu,et al.  Microstructural evolution and phase transformation of Inconel 718 alloys fabricated by selective laser melting under different heat treatment , 2019, Journal of Manufacturing Processes.

[23]  J. Moverare,et al.  Microstructural influence on fatigue crack propagation during high cycle fatigue testing of additively manufactured Alloy 718 , 2019, Materials Characterization.

[24]  Nicholas C. Ferreri,et al.  Role of grain structure, grain boundaries, crystallographic texture, precipitates, and porosity on fatigue behavior of Inconel 718 at room and elevated temperatures , 2019, Materials Characterization.

[25]  Weidong Huang,et al.  The influence of Laves phases on the room temperature tensile properties of Inconel 718 fabricated by powder feeding laser additive manufacturing , 2019, Acta Materialia.

[26]  S. Winwood,et al.  The Effects of Grain Size, Dendritic Structure and Crystallographic Orientation on Fatigue Crack Propagation in IN713C Nickel-Based Superalloy , 2019, International Journal of Plasticity.

[27]  Zhanhu Guo,et al.  Microstructural evolution and mechanical properties of IN718 alloy fabricated by selective laser melting following different heat treatments , 2019, Journal of Alloys and Compounds.

[28]  Y. Murakami,et al.  Defect analysis and fatigue design basis for Ni-based superalloy 718 manufactured by selective laser melting , 2018, International Journal of Fatigue.

[29]  Chang Li,et al.  Enhancing Fatigue Strength of Selective Laser Melting‐Fabricated Inconel 718 by Tailoring Heat Treatment Route , 2018, Advanced Engineering Materials.

[30]  Nima Shamsaei,et al.  Fatigue behavior and cyclic deformation of additive manufactured NiTi , 2018 .

[31]  S. Rahimi,et al.  Stress relaxation behaviour in IN718 nickel based superalloy during ageing heat treatments , 2017 .

[32]  R. Dehoff,et al.  Effect of anisotropy and texture on the low cycle fatigue behavior of Inconel 718 processed via electron beam melting , 2017 .

[33]  I. Beyerlein,et al.  A crystal plasticity model incorporating the effects of precipitates in superalloys: Application to tensile, compressive, and cyclic deformation of Inconel 718 , 2017 .

[34]  Meng Zhang,et al.  Fatigue and fracture behaviour of laser powder bed fusion stainless steel 316L: Influence of processing parameters , 2017 .

[35]  Xin Lin,et al.  The influence of Laves phases on the high-cycle fatigue behavior of laser additive manufactured Inconel 718 , 2017 .

[36]  A. Nassar,et al.  Effect of directed energy deposition processing parameters on laser deposited Inconel® 718: Microstructure, fusion zone morphology, and hardness , 2017 .

[37]  W. M. Tucho,et al.  Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment , 2017 .

[38]  Lei Wang,et al.  The role of δ phase for fatigue crack propagation behavior in a Ni base superalloy at room temperature , 2017 .

[39]  M. L. Nai,et al.  Effect of different heat treatments on the microstructure and mechanical properties in selective laser melted INCONEL 718 alloy , 2017 .

[40]  Michael Gorelik,et al.  Additive manufacturing in the context of structural integrity , 2017 .

[41]  Alaa Elwany,et al.  Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel , 2017 .

[42]  N. Shamsaei,et al.  Microstructure, Fatigue Behavior, and Failure Mechanisms of Direct Laser-Deposited Inconel 718 , 2016, JOM.

[43]  Luke N. Carter,et al.  Additive manufacturing of Ni-based superalloys: The outstanding issues , 2016 .

[44]  Xian‐Cheng Zhang,et al.  Small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169 at 650 °C in air , 2016 .

[45]  Nima Shamsaei,et al.  Fatigue behavior and failure mechanisms of direct laser deposited Ti–6Al–4V , 2016 .

[46]  U. Glatzel,et al.  Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting , 2016 .

[47]  R. K. Mishra,et al.  Investigation of HP Turbine Blade Failure in a Military Turbofan Engine , 2017 .

[48]  M. Hardy,et al.  The role of oxidation damage in fatigue crack initiation of an advanced Ni-based superalloy , 2015 .

[49]  H. Y. Li,et al.  Electron microscopy study of direct laser deposited IN718 , 2015 .

[50]  Xian‐Cheng Zhang,et al.  Grain size effect on multi-scale fatigue crack growth mechanism of Nickel-based alloy GH4169 , 2015 .

[51]  S. Das,et al.  Additive Manufacturing of IN100 Superalloy Through Scanning Laser Epitaxy for Turbine Engine Hot-Section Component Repair: Process Development, Modeling, Microstructural Characterization, and Process Control , 2015, Metallurgical and Materials Transactions A.

[52]  Thomas Etter,et al.  Reduction in mechanical anisotropy through high temperature heat treatment of Hastelloy X processed by Selective Laser Melting (SLM) , 2015 .

[53]  A. Czyrska-Filemonowicz,et al.  Imaging and characterization of γ' and γ"nanoparticles in Inconel 718 by EDX elemental mapping and FIB-SEM tomography , 2015 .

[54]  M. Goto,et al.  Effect of service exposure on fatigue crack propagation of Inconel 718 turbine disc material at elevated temperatures , 2014 .

[55]  G. Bi,et al.  Microstructure and tensile properties of superalloy IN100 fabricated by micro-laser aided additive manufacturing , 2014 .

[56]  Frank Walther,et al.  Effects of Defects in Laser Additive Manufactured Ti-6Al-4V on Fatigue Properties , 2014 .

[57]  S. Hayashi,et al.  γ″-Ni3Nb precipitate in Fe–Ni base alloy , 2013 .

[58]  H. Y. Li,et al.  Effect of different processing technologies and heat treatments on the microstructure and creep behavior of GH4169 superalloy , 2013 .

[59]  D. Yi,et al.  Effects of inclusions, grain boundaries and grain orientations on the fatigue crack initiation and propagation behavior of 2524-T3 Al alloy , 2013 .

[60]  P. Withers,et al.  An anisotropic enhanced thermal conductivity approach for modelling laser melt pools for Ni-base super alloys , 2013 .

[61]  Hong-Zhong Huang,et al.  Fatigue Reliability Analysis of Turbine Disk Alloy Using Saddlepoint Approximation , 2013 .

[62]  L. H. Almeida,et al.  The Effect of δ Phase on the Mechanical Properties of an Inconel 718 Superalloy , 2013, Journal of Materials Engineering and Performance.

[63]  Hui-chen Yu,et al.  Experimental investigation on microcrack initiation process in nickel-based superalloy DAGH4169 , 2012 .

[64]  S. Agnew,et al.  Diffraction characterization of microstructure scale fatigue crack growth in a modern Al–Zn–Mg–Cu alloy , 2012 .

[65]  M. Cristea,et al.  Fatigue limit assessment on seamless tubes in presence of inhomogeneities: Small crack model vs. full scale testing experiments , 2012 .

[66]  L. Murr,et al.  Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting , 2012 .

[67]  R. Murai,et al.  Fatigue and fracture behavior of nickel-based superalloy Inconel 718 up to the very high cycle regime , 2010 .

[68]  K. Chan,et al.  Roles of microstructure in fatigue crack initiation , 2010 .

[69]  Honghua Zhang,et al.  Deformation characteristics of δ phase in the delta-processed Inconel 718 alloy , 2010 .

[70]  A. Pinkerton Laser direct metal deposition: theory and applications in manufacturing and maintenance , 2010 .

[71]  J. Mazumder,et al.  Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability , 2009 .

[72]  Xishan Xie,et al.  Alloy design and development of INCONEL718 type alloy , 2009 .

[73]  Lin Xiao,et al.  Cyclic deformation mechanisms of precipitation-hardened Inconel 718 superalloy , 2008 .

[74]  Y. D. Lee,et al.  Effects of Deformation-Induced Constraint on High-Cycle Fatigue in Ti Alloys with a Duplex Microstructure , 2008 .

[75]  Keith Ridgway,et al.  Optimisation of tool life and productivity when end milling inconel 718TM , 2007 .

[76]  A. Nath,et al.  Investigating laser rapid manufacturing for Inconel-625 components , 2007 .

[77]  D. Davidson,et al.  Fatigue Crack Initiation In WASPALOY at 20 °C , 2007 .

[78]  I. Sinclair,et al.  Influence of grain structure and slip planarity on fatigue crack growth in low alloying artificially aged 2xxx aluminium alloys , 2007 .

[79]  T. Langdon,et al.  The evolution of delta-phase in a superplastic Inconel 718 alloy , 2007 .

[80]  Claus-Peter Fritzen,et al.  Experimental characterization and two-dimensional simulation of short-crack propagation in an austenitic–ferritic duplex steel , 2006 .

[81]  D. L. Chen,et al.  Effect of boron on fatigue crack growth behavior in superalloy IN 718 at RT and 650 °C , 2006 .

[82]  P. Blackwell,et al.  The mechanical and microstructural characteristics of laser-deposited IN718 , 2005 .

[83]  G. Reddy,et al.  Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG laser welds , 2005 .

[84]  M. Chaturvedi,et al.  Shearing of γ″ precipitates and formation of planar slip bands in Inconel 718 during cyclic deformation , 2005 .

[85]  H. Fredriksson,et al.  The effect of cooling rate on the solidification of INCONEL 718 , 2005 .

[86]  A. Merati A study of nucleation and fatigue behavior of an aerospace aluminum alloy 2024-T3 , 2005 .

[87]  G. Reddy,et al.  Control of Laves phase in Inconel 718 GTA welds with current pulsing , 2004 .

[88]  Jacques Lacaze,et al.  Short term precipitation kinetics of delta phase in strain free Inconel* 718 alloy , 2004 .

[89]  C. Koo,et al.  Effect of Solution-Treatment on Microstructure and Mechanical Properties of Cast Fine-Grain CM 247 LC Superalloy , 2004 .

[90]  A. Moufki,et al.  A review of developments towards dry and high speed machining of Inconel 718 alloy , 2004 .

[91]  S. Matsuoka,et al.  High-Cycle Fatigue Properties at Cryogenic Temperatures in INCONEL 718 Nickel-based Superalloy , 2004 .

[92]  A. Pineau,et al.  Modelling the optimum grain size on the low cycle fatigue life of a Ni based superalloy in the presence of two possible crack initiation sites , 2004 .

[93]  Marco J. Starink,et al.  Short crack initiation and growth at 600 °C in notched specimens of Inconel718 , 2003 .

[94]  R. C. McClung,et al.  4.05 – Small Fatigue Cracks , 2003 .

[95]  Jianhui Xie,et al.  A mechanism for the crack initiation of corrosion fatigue of Type 316L stainless steel in Hank's solution , 2002 .

[96]  A. J. Mcevily,et al.  On striations and fatigue crack growth in 1018 steel , 2001 .

[97]  W. Soboyejo,et al.  Micromechanisms of fatigue crack growth in a forged Inconel 718 nickel-based superalloy , 1999 .

[98]  Y. Murakami,et al.  Small Defects and Inhomogeneities in Fatigue Strength: Experiments, Models and Statistical Implications , 1999 .

[99]  A. D Boyd-Lee,et al.  Fatigue crack growth resistant microstructures in polycrystalline Ni-base superalloys for aeroengines , 1999 .

[100]  R. Pippan,et al.  An argument for a cycle-by-cycle propagation of fatigue cracks atsmall stress intensity ranges , 1998 .

[101]  Jinyan,et al.  THE EFFECT OF &-PHASE ON CRACK PROPAGATION UNDER CREEP AND FATIGUE CONDITIONS IN ALLOY 718 , 1998 .

[102]  M. Aindow,et al.  The effect of finely dispersed particles on primary recrystallisation textures in AlMnSi alloys , 1997 .

[103]  Masahiro Endo,et al.  Defect tolerant design of automotive components , 1997 .

[104]  O. Daaland,et al.  The Effect of Particles on Recrystallisation Textures and Microstructures , 1996 .

[105]  Dong Jianxin,et al.  Coarsening behavior of γ″ precipitates in modified inconel 718 superalloy , 1995 .

[106]  K. P. Rao,et al.  Laves phase in superalloy 718 weld metals , 1995 .

[107]  B. Radhakrishnan,et al.  Kinetics of grain growth in the weld heat-affected zone of alloy 718 , 1993, Metallurgical and Materials Transactions A.

[108]  S. Shimada,et al.  A kinetic study on oxidation of niobium carbide , 1993 .

[109]  J. Tien,et al.  Inclusion size effect on the fatigue crack propagation mechanism and fracture mechanics of a superalloy , 1992 .

[110]  F. Leckie,et al.  Inhomogeneous deformation in INCONEL 718 during monotonic and cyclic loadings , 1990 .

[111]  Y. Murakami,et al.  Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: Basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions , 1989 .

[112]  K. Chan,et al.  The crystallography of fatigue crack initiation in coarse grained astroloy at 20°C , 1989 .

[113]  N. Bellinger,et al.  DEVELOPMENT OF A DAMAGE TOLERANT MICROSTRUCTURE FOR INCONEL 718 TURBINE DISC MATERIAL , 1988 .

[114]  S. Antolovich,et al.  Effects of grain size and precipitate size on the fatigue crack growth behavior of alloy 718 at 427 °C , 1987 .

[115]  Yafang Han,et al.  Effect of particle size on the creep rate of superalloy Inconel 718 , 1987 .

[116]  N. Jayaraman,et al.  The Effect of Microstructure on the Fatigue Behavior of NI Base Superalloys , 1983 .

[117]  S. Nemat-Nasser,et al.  Growth and stability of interacting surface flaws of arbitrary shape , 1983 .

[118]  A. Pineau,et al.  Low cycle fatigue behavior of inconel 718 at 298 K and 823 K , 1977 .

[119]  A. Saxena,et al.  Low cycle fatigue, fatigue crack propagation and substructures in a series of polycrystalline Cu-Al alloys , 1975 .

[120]  D. S. Duvall,et al.  Coherency strengthening in Ni base alloys hardened by DO22 γ′ precipitates , 1974, Metallurgical and Materials Transactions B.

[121]  Hyung-Sup Park,et al.  Precipitation In Inconel 718 Alloy , 1972 .

[122]  D. Broek,et al.  On the formation of fatigue striations , 1972 .

[123]  D. R. Muzyka,et al.  The microstructure of 706, a new Fe−Ni-base superalloy , 1971 .