Ensemble cryo-EM elucidates the mechanism of translation fidelity

Gene translation depends on accurate decoding of mRNA, the structural mechanism of which remains poorly understood. Ribosomes decode mRNA codons by selecting cognate aminoacyl-tRNAs delivered by elongation factor Tu (EF-Tu). Here we present high-resolution structural ensembles of ribosomes with cognate or near-cognate aminoacyl-tRNAs delivered by EF-Tu. Both cognate and near-cognate tRNA anticodons explore the aminoacyl-tRNA-binding site (A site) of an open 30S subunit, while inactive EF-Tu is separated from the 50S subunit. A transient conformation of decoding-centre nucleotide G530 stabilizes the cognate codon–anticodon helix, initiating step-wise ‘latching’ of the decoding centre. The resulting closure of the 30S subunit docks EF-Tu at the sarcin–ricin loop of the 50S subunit, activating EF-Tu for GTP hydrolysis and enabling accommodation of the aminoacyl-tRNA. By contrast, near-cognate complexes fail to induce the G530 latch, thus favouring open 30S pre-accommodation intermediates with inactive EF-Tu. This work reveals long-sought structural differences between the pre-accommodation of cognate and near-cognate tRNAs that elucidate the mechanism of accurate decoding.

[1]  M. Ehrenberg,et al.  Accuracy of initial codon selection by aminoacyl-tRNAs on the mRNA-programmed bacterial ribosome , 2015, Proceedings of the National Academy of Sciences.

[2]  J. Puglisi,et al.  Thiostrepton inhibition of tRNA delivery to the ribosome. , 2007, RNA.

[3]  J. Holton,et al.  Structures of the Bacterial Ribosome at 3.5 Å Resolution , 2005, Science.

[4]  T. Pape,et al.  Complete kinetic mechanism of elongation factor Tu‐dependent binding of aminoacyl‐tRNA to the A site of the E.coli ribosome , 1998, The EMBO journal.

[5]  Tina Daviter,et al.  A uniform response to mismatches in codon-anticodon complexes ensures ribosomal fidelity. , 2006, Molecular cell.

[6]  Nathaniel Echols,et al.  The Phenix software for automated determination of macromolecular structures. , 2011, Methods.

[7]  M. Ehrenberg,et al.  Proofreading neutralizes potential error hotspots in genetic code translation by transfer RNAs , 2016, RNA.

[8]  V. Ramakrishnan,et al.  Recognition of Cognate Transfer RNA by the 30S Ribosomal Subunit , 2001, Science.

[9]  Dmitry Lyumkis,et al.  Likelihood-based classification of cryo-EM images using FREALIGN. , 2013, Journal of structural biology.

[10]  R. Huber,et al.  Accurate Bond and Angle Parameters for X-ray Protein Structure Refinement , 1991 .

[11]  H. Noller,et al.  Structural basis for translation termination on the 70S ribosome , 2008, Nature.

[12]  M. Selmer,et al.  Structure of the 70S Ribosome Complexed with mRNA and tRNA , 2006, Science.

[13]  E. Westhof,et al.  A new understanding of the decoding principle on the ribosome , 2012, Nature.

[14]  C. Brooks,et al.  Flipping of the ribosomal A-site adenines provides a basis for tRNA selection. , 2014, Journal of molecular biology.

[15]  M. Rodnina,et al.  Codon‐dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome. , 1995, The EMBO journal.

[16]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[17]  N. Grigorieff,et al.  Accurate determination of local defocus and specimen tilt in electron microscopy. , 2003, Journal of structural biology.

[18]  E. Westhof,et al.  The ribosome prohibits the G•U wobble geometry at the first position of the codon–anticodon helix , 2016, Nucleic acids research.

[19]  Mark Helm,et al.  Post-transcriptional nucleotide modification and alternative folding of RNA , 2006, Nucleic acids research.

[20]  H. Noller,et al.  Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites , 1989, Cell.

[21]  J R Kremer,et al.  Computer visualization of three-dimensional image data using IMOD. , 1996, Journal of structural biology.

[22]  Harry F. Noller,et al.  Transfer RNA shields specific nucleotides in 16S ribosomal RNA from attack by chemical probes , 1986, Cell.

[23]  Alexander Hüttenhofer,et al.  Nucleotide modifications within bacterial messenger RNAs regulate their translation and are able to rewire the genetic code , 2015, Nucleic acids research.

[24]  James Z Chen,et al.  SIGNATURE: a single-particle selection system for molecular electron microscopy. , 2007, Journal of structural biology.

[25]  N. Grigorieff,et al.  Ribosome•RelA structures reveal the mechanism of stringent response activation , 2016, eLife.

[26]  Rachel Green,et al.  Mutational analysis reveals two independent molecular requirements during transfer RNA selection on the ribosome , 2007, Nature Structural &Molecular Biology.

[27]  Richard Bertram,et al.  Simulated-annealing real-space refinement as a tool in model building. , 2002, Acta crystallographica. Section D, Biological crystallography.

[28]  E. Nikonowicz,et al.  Metal ion stabilization of the U-turn of the A37 N6-dimethylallyl-modified anticodon stem-loop of Escherichia coli tRNAPhe. , 2004, Biochemistry.

[29]  M. Rodnina,et al.  Distortion of tRNA upon Near-cognate Codon Recognition on the Ribosome* , 2011, The Journal of Biological Chemistry.

[30]  Marina V. Rodnina,et al.  Structure of the E. coli ribosome–EF-Tu complex at <3 Å resolution by Cs-corrected cryo-EM , 2015, Nature.

[31]  Jianyu Zhu,et al.  Crystal structure of a translation termination complex formed with release factor RF2 , 2008, Proceedings of the National Academy of Sciences.

[32]  O. Uhlenbeck,et al.  Different aa-tRNAs are selected uniformly on the ribosome. , 2008, Molecular cell.

[33]  M. Ehrenberg,et al.  An A to U transversion at position 1067 of 23 S rRNA from Escherichia coli impairs EF-Tu and EF-G function. , 1997, Journal of molecular biology.

[34]  Klaus Schulten,et al.  Structural characterization of mRNA-tRNA translocation intermediates , 2012, Proceedings of the National Academy of Sciences.

[35]  M. Ehrenberg,et al.  Two proofreading steps amplify the accuracy of genetic code translation , 2016, Proceedings of the National Academy of Sciences.

[36]  Joachim Frank,et al.  Cryo‐EM reveals an active role for aminoacyl‐tRNA in the accommodation process , 2002, The EMBO journal.

[37]  Nikolaus Grigorieff,et al.  Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6 , 2015, eLife.

[38]  H. Noller,et al.  Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA , 1988, Nature.

[39]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[40]  Prashant K. Khade,et al.  Steric complementarity in the decoding center is important for tRNA selection by the ribosome. , 2013, Journal of molecular biology.

[41]  Yong-Gui Gao,et al.  The Crystal Structure of the Ribosome Bound to EF-Tu and Aminoacyl-tRNA , 2009, Science.

[42]  E. Westhof Isostericity and tautomerism of base pairs in nucleic acids , 2014, FEBS letters.

[43]  P. Traub,et al.  [41] Reconstitution of ribosomes from subribosomal components , 1971 .

[44]  P. Farabaugh,et al.  Testing constraints on rRNA bases that make nonsequence-specific contacts with the codon-anticodon complex in the ribosomal A site. , 2007, RNA.

[45]  K. Nierhaus The allosteric three-site model for the ribosomal elongation cycle: features and future. , 1990, Biochemistry.

[46]  N. Grigorieff,et al.  Automatic estimation and correction of anisotropic magnification distortion in electron microscopes. , 2015, Journal of structural biology.

[47]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[48]  V. Ramakrishnan,et al.  Structural basis of the translational elongation cycle. , 2013, Annual review of biochemistry.

[49]  R. Brimacombe,et al.  Visualization of elongation factor Tu on the Escherichia coli ribosome , 1997, Nature.

[50]  Sarah E. Walker,et al.  Preparation and evaluation of acylated tRNAs. , 2008, Methods.

[51]  T. Mielke,et al.  Regulation of the Mammalian Elongation Cycle by Subunit Rolling: A Eukaryotic-Specific Ribosome Rearrangement , 2014, Cell.

[52]  H. Noller,et al.  Evidence for functional interaction between elongation factor Tu and 16S ribosomal RNA. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[53]  A. Kelley,et al.  The Mechanism for Activation of GTP Hydrolysis on the Ribosome , 2010, Science.

[54]  M. Rodnina,et al.  Kinetic determinants of high-fidelity tRNA discrimination on the ribosome. , 2004, Molecular cell.

[55]  T. Pape,et al.  Conformational switch in the decoding region of 16S rRNA during aminoacyl-tRNA selection on the ribosome , 2000, Nature Structural Biology.

[56]  Wen Jiang,et al.  EMAN2: an extensible image processing suite for electron microscopy. , 2007, Journal of structural biology.

[57]  S. Harrison,et al.  Lipid–protein interactions in double-layered two-dimensional AQP0 crystals , 2005, Nature.

[58]  N Grigorieff,et al.  Frealign: An Exploratory Tool for Single-Particle Cryo-EM. , 2016, Methods in enzymology.

[59]  M. Ehrenberg,et al.  Mutations in 23 S ribosomal RNA perturb transfer RNA selection and can lead to streptomycin dependence. , 1994, Journal of molecular biology.

[60]  K. Nierhaus,et al.  Evidence that the G2661 region of 23S rRNA is located at the ribosomal binding sites of both elongation factors. , 1987, Biochimie.

[61]  M. Ehrenberg,et al.  Genetic code translation displays a linear trade-off between efficiency and accuracy of tRNA selection , 2011, Proceedings of the National Academy of Sciences.

[62]  J. Puglisi,et al.  tRNA selection and kinetic proofreading in translation , 2004, Nature Structural &Molecular Biology.

[63]  I. Tinoco,et al.  Biological mechanisms, one molecule at a time. , 2011, Genes & development.

[64]  Determination of the relative precision of atoms in a macromolecular structure. , 1998, Acta crystallographica. Section D, Biological crystallography.

[65]  M. Rodnina,et al.  Review: Translational GTPases , 2016, Biopolymers.

[66]  Amos Bairoch,et al.  Swiss-Prot: Juggling between evolution and stability , 2004, Briefings Bioinform..

[67]  T. Pape,et al.  Induced fit in initial selection and proofreading of aminoacyl‐tRNA on the ribosome , 1999, The EMBO journal.

[68]  M. Winkler,et al.  Solution conformations of unmodified and A(37)N(6)-dimethylallyl modified anticodon stem-loops of Escherichia coli tRNA(Phe). , 2002, Journal of Molecular Biology.

[69]  S. Tishchenko,et al.  High-resolution crystal structure of the isolated ribosomal L1 stalk. , 2012, Acta crystallographica. Section D, Biological crystallography.

[70]  H. Grubmüller,et al.  The pathway to GTPase activation of elongation factor SelB on the ribosome , 2016, Nature.

[71]  C. Vonrhein,et al.  Structure of the 30S ribosomal subunit , 2000, Nature.

[72]  A. Steven,et al.  One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions. , 2013, Journal of structural biology.

[73]  J. Alfonzo,et al.  Transfer RNA modifications: nature's combinatorial chemistry playground , 2013, Wiley interdisciplinary reviews. RNA.

[74]  J. Ofengand,et al.  Functional effects of a G to U base change at position 530 in a highly conserved loop of Escherichia coli 16S RNA. , 1993, Biochemistry.

[75]  T. Pape,et al.  Initial Binding of the Elongation Factor Tu·GTP·Aminoacyl-tRNA Complex Preceding Codon Recognition on the Ribosome (*) , 1996, The Journal of Biological Chemistry.

[76]  S Thirup,et al.  Crystal Structure of the Ternary Complex of Phe-tRNAPhe, EF-Tu, and a GTP Analog , 1995, Science.

[77]  V. Ramakrishnan,et al.  Selection of tRNA by the Ribosome Requires a Transition from an Open to a Closed Form , 2002, Cell.

[78]  N. Grigorieff,et al.  Structure of the ribosome with elongation factor G trapped in the pretranslocation state , 2013, Proceedings of the National Academy of Sciences.

[79]  A. Brunger Version 1.2 of the Crystallography and NMR system , 2007, Nature Protocols.

[80]  Steven Chu,et al.  tRNA dynamics on the ribosome during translation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[81]  S. Yokoyama,et al.  Effects of anticodon 2'-O-methylations on tRNA codon recognition in an Escherichia coli cell-free translation. , 2000, RNA.

[82]  Kurt Fredrick,et al.  Contribution of 16S rRNA nucleotides forming the 30S subunit A and P sites to translation in Escherichia coli. , 2005, RNA.

[83]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[84]  M. Rodnina,et al.  Essential role of histidine 84 in elongation factor Tu for the chemical step of GTP hydrolysis on the ribosome. , 2003, Journal of molecular biology.

[85]  M. Yusupov,et al.  Structural rearrangements of the ribosome at the tRNA proofreading step , 2010, Nature Structural &Molecular Biology.

[86]  Michael S. Chapman,et al.  Restrained real-space macromolecular atomic refinement using a new resolution-dependent electron-density function , 1995 .

[87]  M. Erlacher,et al.  Atomic mutagenesis at the ribosomal decoding site , 2016, RNA Biology.

[88]  O. Uhlenbeck,et al.  Uniform binding of aminoacylated transfer RNAs to the ribosomal A and P sites. , 2004, Molecular cell.

[89]  Quantitative analysis of deoxynucleotide substitutions in the codon-anticodon helix. , 2006, Journal of molecular biology.

[90]  J. Frank,et al.  Solution Structure of the E. coli 70S Ribosome at 11.5 Å Resolution , 2000, Cell.