Glioma-Derived miRNA-Containing Extracellular Vesicles Induce Angiogenesis by Reprogramming Brain Endothelial Cells.

[1]  Arnold Kriegstein,et al.  The phenotypes of proliferating glioblastoma cells reside on a single axis of variation. , 2019, Cancer discovery.

[2]  Shizhong Zhang,et al.  MiR-9-5p Inhibits Glioblastoma Cells Proliferation Through Directly Targeting FOXP2 (Forkhead Box P2) , 2019, Front. Oncol..

[3]  Sagar,et al.  Mapping microglia states in the human brain through the integration of high-dimensional techniques , 2019, Nature Neuroscience.

[4]  B. Carter,et al.  Characterization of plasma-derived protoporphyrin-IX-positive extracellular vesicles following 5-ALA use in patients with malignant glioma , 2019, EBioMedicine.

[5]  F. Sigaroodi,et al.  Tumor‐derived exosomes: Implication in angiogenesis and antiangiogenesis cancer therapy , 2019, Journal of cellular physiology.

[6]  Mariella G. Filbin,et al.  An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma , 2019, Cell.

[7]  Zhifeng Gao,et al.  MicroRNA-9-5p promotes angiogenesis but inhibits apoptosis and inflammation of high glucose-induced injury in human umbilical vascular endothelial cells by targeting CXCR4. , 2019, International journal of biological macromolecules.

[8]  F. Svensson,et al.  Therapy for glioblastoma: is it working? , 2019, Drug discovery today.

[9]  Guillermo A. Gomez,et al.  Glioblastoma heterogeneity and the tumour microenvironment: implications for preclinical research and development of new treatments. , 2019, Biochemical Society transactions.

[10]  Eliot T. McKinley,et al.  Transfer of Functional Cargo in Exomeres , 2019, Cell reports.

[11]  Dylan T Burnette,et al.  Reassessment of Exosome Composition , 2019, Cell.

[12]  M. Gerstein,et al.  exceRpt: A Comprehensive Analytic Platform for Extracellular RNA Profiling. , 2019, Cell systems.

[13]  Alexander R. Pico,et al.  exRNA Atlas Analysis Reveals Distinct Extracellular RNA Cargo Types and Their Carriers Present across Human Biofluids , 2019, Cell.

[14]  L. Laurent,et al.  Small RNA Sequencing across Diverse Biofluids Identifies Optimal Methods for exRNA Isolation , 2019, Cell.

[15]  J. Robert Kane The Role of Brain Vasculature in Glioblastoma , 2019, Molecular Neurobiology.

[16]  F. Paris,et al.  Glioblastoma Stem-Like Cells, Metabolic Strategy to Kill a Challenging Target , 2019, Front. Oncol..

[17]  Tao Wang,et al.  MiR-9 promotes tumorigenesis and angiogenesis and is activated by MYC and OCT4 in human glioma , 2019, Journal of Experimental & Clinical Cancer Research.

[18]  D. Matias,et al.  Glioblastoma Therapy in the Age of Molecular Medicine. , 2019, Trends in cancer.

[19]  Z. Liang,et al.  RGS5 decreases the proliferation of human ovarian carcinoma-derived primary endothelial cells through the MAPK/ERK signaling pathway in hypoxia , 2018, Oncology reports.

[20]  D. Choi,et al.  Extracellular Vesicles as Conduits of Non-Coding RNA Emission and Intercellular Transfer in Brain Tumors , 2018, Non-coding RNA.

[21]  D. Schiffer,et al.  Glioblastoma: Microenvironment and Niche Concept , 2018, Cancers.

[22]  N. Pavlakis,et al.  Anti-angiogenic therapy for high-grade glioma. , 2018, The Cochrane database of systematic reviews.

[23]  A. Kim,et al.  Developments in Blood-Brain Barrier Penetrance and Drug Repurposing for Improved Treatment of Glioblastoma , 2018, Front. Oncol..

[24]  L. Montermini,et al.  Molecular subtypes and differentiation programmes of glioma stem cells as determinants of extracellular vesicle profiles and endothelial cell-stimulating activities , 2018, Journal of extracellular vesicles.

[25]  X. Breakefield,et al.  Multidimensional communication in the microenvirons of glioblastoma , 2018, Nature Reviews Neurology.

[26]  M. Caroli,et al.  Angiogenesis in human brain tumors: screening of drug response through a patient-specific cell platform for personalized therapy , 2018, Scientific Reports.

[27]  J. Beijnen,et al.  Improved Brain Penetration and Antitumor Efficacy of Temozolomide by Inhibition of ABCB1 and ABCG21 , 2018, Neoplasia.

[28]  L. Sobrevia,et al.  Role of extracellular vesicles in glioma progression. , 2017, Molecular aspects of medicine.

[29]  Hsien-Da Huang,et al.  miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions , 2017, Nucleic Acids Res..

[30]  Mark Gerstein,et al.  Novel approaches for bioinformatic analysis of salivary RNA sequencing data for development , 2018, Bioinform..

[31]  Yang Wang,et al.  Coding and noncoding landscape of extracellular RNA released by human glioma stem cells , 2017, Nature Communications.

[32]  M. Krasnow,et al.  MicroRNA-9 Couples Brain Neurogenesis and Angiogenesis. , 2017, Cell reports.

[33]  D. Ricard,et al.  Glioblastoma stem-like cells secrete the pro-angiogenic VEGF-A factor in extracellular vesicles , 2017, Journal of extracellular vesicles.

[34]  M. Bak,et al.  Elevation of brain-enriched miRNAs in cerebrospinal fluid of patients with acute ischemic stroke , 2017, Biomarker Research.

[35]  A. Chakravarti,et al.  The Role of miRNAs in Angiogenesis, Invasion and Metabolism and Their Therapeutic Implications in Gliomas , 2017, Cancers.

[36]  E. Chiocca,et al.  MicroRNA-Mediated Dynamic Bidirectional Shift between the Subclasses of Glioblastoma Stem-like Cells. , 2017, Cell reports.

[37]  H. Wakimoto,et al.  Dissecting inherent intratumor heterogeneity in patient-derived glioblastoma culture models , 2017, Neuro-oncology.

[38]  F. Dignat-George,et al.  Extracellular Vesicles in Angiogenesis , 2017, Circulation research.

[39]  Hakho Lee,et al.  MicroRNA Signatures and Molecular Subtypes of Glioblastoma: The Role of Extracellular Transfer , 2017, Stem cell reports.

[40]  J. George,et al.  Expression and function of ABCG2 and XIAP in glioblastomas , 2017, Journal of Neuro-Oncology.

[41]  Mariella G. Filbin,et al.  Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq , 2017, Science.

[42]  X. Wang,et al.  A 4-miRNAs signature predicts survival in glioblastoma multiforme patients. , 2017, Cancer biomarkers : section A of Disease markers.

[43]  Kahkashan Perveen,et al.  Glioblastoma Multiforme: A Review of its Epidemiology and Pathogenesis through Clinical Presentation and Treatment , 2017, Asian Pacific journal of cancer prevention : APJCP.

[44]  Adrian V. Lee,et al.  Epigenomic Deconvolution of Breast Tumors Reveals Metabolic Coupling between Constituent Cell Types. , 2016, Cell reports.

[45]  Xinya Chen,et al.  Increased Brain-Specific MiR-9 and MiR-124 in the Serum Exosomes of Acute Ischemic Stroke Patients , 2016, PloS one.

[46]  Chulhee Choi,et al.  SoxF Transcription Factors Are Positive Feedback Regulators of VEGF Signaling. , 2016, Circulation research.

[47]  R. Weissleder,et al.  Extracellular Vesicles from High-Grade Glioma Exchange Diverse Pro-oncogenic Signals That Maintain Intratumoral Heterogeneity. , 2016, Cancer research.

[48]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[49]  Haiyang Xie,et al.  MicroRNA-452 promotes stem-like cells of hepatocellular carcinoma by inhibiting Sox7 involving Wnt/β-catenin signaling pathway , 2016, Oncotarget.

[50]  J. Godlewski,et al.  MicroRNA and extracellular vesicles in glioblastoma: small but powerful , 2016, Brain Tumor Pathology.

[51]  Leonora Balaj,et al.  Extracellular Vesicles: Composition, Biological Relevance, and Methods of Study. , 2015, Bioscience.

[52]  Jun S. Song,et al.  The Cancer Genome Atlas Analysis Predicts MicroRNA for Targeting Cancer Growth and Vascularization in Glioblastoma. , 2015, Molecular therapy : the journal of the American Society of Gene Therapy.

[53]  G. Genové,et al.  Endogenous Brain Pericytes Are Widely Activated and Contribute to Mouse Glioma Microvasculature , 2015, PloS one.

[54]  I. Nakano,et al.  Extracellular vesicles in the biology of brain tumour stem cells--Implications for inter-cellular communication, therapy and biomarker development. , 2015, Seminars in cell & developmental biology.

[55]  Jill S. Barnholtz-Sloan,et al.  CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012 , 2015, Neuro-oncology.

[56]  Thomas Lengauer,et al.  Comprehensive Analysis of DNA Methylation Data with RnBeads , 2014, Nature Methods.

[57]  Shawn M. Gillespie,et al.  Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma , 2014, Science.

[58]  Ying Zhang,et al.  microRNA-148a is a prognostic oncomiR that targets MIG6 and BIM to regulate EGFR and apoptosis in glioblastoma. , 2014, Cancer research.

[59]  J. Barnholtz-Sloan,et al.  CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. , 2012, Neuro-oncology.

[60]  R. Wheelhouse,et al.  Glioblastoma Multiforme Therapy and Mechanisms of Resistance , 2013, Pharmaceuticals.

[61]  P. Marsden,et al.  Angiogenesis in glioblastoma. , 2013, The New England journal of medicine.

[62]  Increased expression of microRNA-9 predicts an unfavorable prognosis in human glioma , 2013, Molecular and Cellular Biochemistry.

[63]  D. Haussler,et al.  The Somatic Genomic Landscape of Glioblastoma , 2013, Cell.

[64]  D. Zagzag,et al.  Mechanisms of glioma-associated neovascularization. , 2012, The American journal of pathology.

[65]  J. Lötvall,et al.  Importance of RNA isolation methods for analysis of exosomal RNA: evaluation of different methods. , 2012, Molecular immunology.

[66]  Stephen Yip,et al.  Maintenance of primary tumor phenotype and genotype in glioblastoma stem cells. , 2012, Neuro-oncology.

[67]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[68]  Vineet Bafna,et al.  Sensitive gene fusion detection using ambiguously mapping RNA-Seq read pairs , 2011, Bioinform..

[69]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[70]  Jian Li,et al.  RGS5, a Hypoxia-inducible Apoptotic Stimulator in Endothelial Cells* , 2009, The Journal of Biological Chemistry.

[71]  Joshua M. Korn,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.

[72]  B. Scheithauer,et al.  The 2007 WHO classification of tumours of the central nervous system , 2007, Acta Neuropathologica.

[73]  Thomas D. Wu,et al.  Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. , 2006, Cancer cell.

[74]  S. Horvath,et al.  Gene Expression Profiling of Gliomas Strongly Predicts Survival , 2004, Cancer Research.

[75]  L. Benjamin,et al.  Angiogenesis: Tumorigenesis and the angiogenic switch , 2003, Nature Reviews Cancer.