Sur les ensembles d'entiers reconnaissables
暂无分享,去创建一个
[1] Jean-Jacques Pansiot,et al. Complexité des Facteurs des Mots Infinis Engendrés par Morphimes Itérés , 1984, ICALP.
[2] A. L. Semenov,et al. Presburgerness of predicates regular in two number systems , 1977 .
[3] Fabien Durand,et al. A characterization of substitutive sequences using return words , 1998, Discret. Math..
[4] S. Fabre,et al. Une généralisation du théorème de Cobham , 1994 .
[5] Anne Bertrand-Mathis. Développement en base $\theta $, répartition modulo un de la suite $(x\theta ^n)$, n$\ge 0$, langages codés et $\theta $-shift , 1986 .
[6] Jeffrey Shallit,et al. Numeration Systems, Linear Recurrences, and Regular Sets , 1994, Inf. Comput..
[7] Brigitte Mosse,et al. Properties of words and recognizability of fixed points of a substitution , 1992 .
[8] Anne Bertrand-Mathis,et al. Comment ecrire les nombres entiers dans une base qui n'est pas entiere , 1989 .
[9] C. Michaux,et al. LOGIC AND p-RECOGNIZABLE SETS OF INTEGERS , 1994 .
[10] Brigitte Mossé,et al. Puissances de mots et reconnaissabilité des point fixes d'une substitution , 1992, Theor. Comput. Sci..
[11] Fabien Durand,et al. A Generalization of Cobham's Theorem , 1998, Theory of Computing Systems.
[12] W. Parry. On theβ-expansions of real numbers , 1960 .
[13] Véronique Bruyère,et al. Recognizable Sets of Numbers in Nonstandard Bases , 1995, LATIN.
[14] Samuel Eilenberg,et al. Automata, languages, and machines. A , 1974, Pure and applied mathematics.
[15] Roger Villemaire,et al. Presburger Arithmetic and Recognizability of Sets of Natural Numbers by Automata: New Proofs of Cobham's and Semenov's Theorems , 1996, Ann. Pure Appl. Log..
[16] Douglas Lind,et al. An Introduction to Symbolic Dynamics and Coding , 1995 .
[17] M. Queffélec. Substitution dynamical systems, spectral analysis , 1987 .