Sur les ensembles d'entiers reconnaissables

Let U and V be two Bertrand numeration systems, and, a and b the two Parry numbers there are naturally associated with. Suppose they are multiplicatively independent. We prove that, if E is a subset of positive integers which is both U and V recognizable, then E is a finite union of arithmetical progressions.

[1]  Jean-Jacques Pansiot,et al.  Complexité des Facteurs des Mots Infinis Engendrés par Morphimes Itérés , 1984, ICALP.

[2]  A. L. Semenov,et al.  Presburgerness of predicates regular in two number systems , 1977 .

[3]  Fabien Durand,et al.  A characterization of substitutive sequences using return words , 1998, Discret. Math..

[4]  S. Fabre,et al.  Une généralisation du théorème de Cobham , 1994 .

[5]  Anne Bertrand-Mathis Développement en base $\theta $, répartition modulo un de la suite $(x\theta ^n)$, n$\ge 0$, langages codés et $\theta $-shift , 1986 .

[6]  Jeffrey Shallit,et al.  Numeration Systems, Linear Recurrences, and Regular Sets , 1994, Inf. Comput..

[7]  Brigitte Mosse,et al.  Properties of words and recognizability of fixed points of a substitution , 1992 .

[8]  Anne Bertrand-Mathis,et al.  Comment ecrire les nombres entiers dans une base qui n'est pas entiere , 1989 .

[9]  C. Michaux,et al.  LOGIC AND p-RECOGNIZABLE SETS OF INTEGERS , 1994 .

[10]  Brigitte Mossé,et al.  Puissances de mots et reconnaissabilité des point fixes d'une substitution , 1992, Theor. Comput. Sci..

[11]  Fabien Durand,et al.  A Generalization of Cobham's Theorem , 1998, Theory of Computing Systems.

[12]  W. Parry On theβ-expansions of real numbers , 1960 .

[13]  Véronique Bruyère,et al.  Recognizable Sets of Numbers in Nonstandard Bases , 1995, LATIN.

[14]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[15]  Roger Villemaire,et al.  Presburger Arithmetic and Recognizability of Sets of Natural Numbers by Automata: New Proofs of Cobham's and Semenov's Theorems , 1996, Ann. Pure Appl. Log..

[16]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[17]  M. Queffélec Substitution dynamical systems, spectral analysis , 1987 .