LDG methods for Stokes flow problems

We review the development of local discontinuous Galerkin methods for the Stokes problem in incompressible fluid flow. We explain the derivation of these methods and present the corresponding error estimates. The case of natural boundary conditions is treated. A series of numerical examples are shown.

[1]  L. Franca,et al.  Error analysis of some Galerkin least squares methods for the elasticity equations , 1991 .

[2]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[3]  Bernardo Cockburn,et al.  Approximation of the Velocity by Coupling Discontinuous Galerkin and Mixed Finite Element Methods for Flow Problems , 2002 .

[4]  P. Hansbo,et al.  CHALMERS FINITE ELEMENT CENTER Preprint 2000-06 Discontinuous Galerkin Methods for Incompressible and Nearly Incompressible Elasticity by Nitsche ’ s Method , 2007 .

[5]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[6]  Ohannes A. Karakashian,et al.  Piecewise solenoidal vector fields and the Stokes problem , 1990 .

[7]  Stefano Berrone,et al.  Adaptive discretization of stationary and incompressible Navier–Stokes equations by stabilized finite element methods , 2001 .

[8]  Clint Dawson,et al.  Some Extensions Of The Local Discontinuous Galerkin Method For Convection-Diffusion Equations In Mul , 1999 .

[9]  Rolf Rannacher,et al.  ARTIFICIAL BOUNDARIES AND FLUX AND PRESSURE CONDITIONS FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS , 1996 .

[10]  J. Whiteman The Mathematics of Finite Elements and Applications. , 1983 .

[11]  Guido Kanschat,et al.  A multilevel discontinuous Galerkin method , 2003, Numerische Mathematik.

[12]  Ilaria Perugia,et al.  Superconvergence of the Local Discontinuous Galerkin Method for Elliptic Problems on Cartesian Grids , 2001, SIAM J. Numer. Anal..

[13]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[14]  Ohannes A. Karakashian,et al.  A Nonconforming Finite Element Method for the Stationary Navier--Stokes Equations , 1998 .

[15]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[16]  Ilaria Perugia,et al.  An A Priori Error Analysis of the Local Discontinuous Galerkin Method for Elliptic Problems , 2000, SIAM J. Numer. Anal..

[17]  Guido Kanschat,et al.  Local Discontinuous Galerkin Methods for the Stokes System , 2002, SIAM J. Numer. Anal..

[18]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[19]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[20]  Chi-Wang Shu,et al.  The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1988, ESAIM: Mathematical Modelling and Numerical Analysis.

[21]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[22]  Ilaria Perugia,et al.  On the Coupling of Local Discontinuous Galerkin and Conforming Finite Element Methods , 2001, J. Sci. Comput..

[23]  Ilaria Perugia,et al.  An hp-Analysis of the Local Discontinuous Galerkin Method for Diffusion Problems , 2002, J. Sci. Comput..