Voronoi’s Theory of Continued Fractions

[1]  Fang Song,et al.  A quantum algorithm for computing the unit group of an arbitrary degree number field , 2014, STOC.

[2]  Claus Fieker,et al.  Subexponential class group and unit group computation in large degree number fields , 2014, LMS J. Comput. Math..

[3]  M. Jacobson,et al.  Infrastructure: structure inside the class group of a real quadratic field , 2014 .

[4]  Claus Fieker,et al.  New techniques for computing the ideal class group and a system of fundamental units in number fields , 2012, ArXiv.

[5]  D. Faddeev,et al.  The theory of irrationalities of the third degree , 2009 .

[6]  Michael J. Jacobson,et al.  Solving the Pell Equation , 2008 .

[7]  B. Delone,et al.  The St. Petersburg School of Number Theory , 2005 .

[8]  Sean Hallgren,et al.  Fast quantum algorithms for computing the unit group and class group of a number field , 2005, STOC '05.

[9]  Henri Cohen,et al.  Subexponential Algorithms for Class Group and Unit Computations , 1997, J. Symb. Comput..

[10]  H. Grundman Systems of Fundamental Units in Cubic Orders , 1995 .

[11]  L. Schoenfeld,et al.  A table of fundamental pairs of units in totally real cubic fields , 1987 .

[12]  H. C. Williams The spacing of the minima in certain cubic lattices. , 1986 .

[13]  H. C. Williams,et al.  Continued fractions and number-theoretic computations , 1985 .

[14]  J. Buchmann A generalization of Voronoi's unit algorithm II , 1985 .

[15]  Finding fundamental units in totally real fields , 1984 .

[16]  H. Godwin A note on Cusick's theorem on units in totally real cubic fields , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.

[17]  Finding fundamental units in cubic fields , 1982 .

[18]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[19]  Ein periodisches verfahren zur berechnung eines systems von grundeinheiten in den total reellen kubischen körpern , 1937 .

[20]  G. Bullig Die Berechnung der Grundeinheit in den kubischen Körpern mit negativer Diskriminante , 1936 .

[21]  J. Uspensky A method for finding units in cubic orders of a negative discriminant , 1931 .